Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a fast Rcpp'-based implementation of polynomially-computable voting theory methods for committee ranking and scoring. The package includes methods such as Approval Voting (AV), Satisfaction Approval Voting (SAV), sequential Proportional Approval Voting (PAV), and sequential Phragmen's Rule. Weighted variants of these methods are also provided, allowing for differential voter influence.
Estimates the first-exposure effect (FEE) using a one-inflated positive Poisson model, or a one-inflated zero-truncated negative binomial model. In addition, estimates the marginal FEE, and standard errors for the FEE and marginal FEE.
This package implements the Fixed Effect Jackknife Instrumental Variables ('FEJIV') estimator of Chao, Swanson, and Woutersen (2023) <doi:10.1016/j.jeconom.2022.12.011>, allowing consistent IV estimation with many (possibly weak) instruments, cluster fixed effects, heteroskedastic errors, and many exogenous covariates. The estimator is recommended by SÅ oczyÅ ski (2024) <doi:10.48550/arXiv.2011.06695> as an alternative to two-stage least squares when estimating the interacted specification of Angrist and Imbens (1995) <doi:10.1080/01621459.1995.10476535>.
Estimate the of fractal dimension of a black area in 2D and 3D (slices) images using the box-counting method. See Klinkenberg B. (1994) <doi:10.1007/BF02065874>.
The four-gamete test is based on the infinite-sites model which assumes that the probability of the same mutation occurring twice (recurrent or parallel mutations) and the probability of a mutation back to the original state (reverse mutations) are close to zero. Without these types of mutations, the only explanation for observing the four dilocus genotypes (example below) is recombination (Hudson and Kaplan 1985, Genetics 111:147-164). Thus, the presence of all four gametes is also called phylogenetic incompatibility.
Forensic applications of pedigree analysis, including likelihood ratios for relationship testing, general relatedness inference, marker simulation, and power analysis. forrel is part of the pedsuite', a collection of packages for pedigree analysis, further described in the book Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302). Several functions deal specifically with power analysis in missing person cases, implementing methods described in Vigeland et al. (2020) <doi:10.1016/j.fsigen.2020.102376>. Data import from the Familias software (Egeland et al. (2000) <doi:10.1016/S0379-0738(00)00147-X>) is supported through the pedFamilias package.
Easy way to plot regular/weighted/conditional distributions by using formulas. The core of the package concerns distribution plots which are automatic: the many options are tailored to the data at hand to offer the nicest and most meaningful graphs possible -- with no/minimum user input. Further provide functions to plot conditional trends and box plots. See <https://lrberge.github.io/fplot/> for more information.
This package provides a model-independent factor importance ranking and selection procedure based on total Sobol indices. Please see Huang and Joseph (2025) <doi:10.1080/00401706.2025.2483531>. This research is supported by U.S. National Science Foundation grants DMS-2310637 and DMREF-1921873.
Analyzes the function calls in an R package and creates a hive plot of the calls, dividing them among functions that only make outgoing calls (sources), functions that have only incoming calls (sinks), and those that have both incoming calls and make outgoing calls (managers). Function calls can be mapped by their absolute numbers, their normalized absolute numbers, or their rank. FuncMap should be useful for comparing packages at a high level for their overall design. Plus, it's just plain fun. The hive plot concept was developed by Martin Krzywinski (www.hiveplot.com) and inspired this package. Note: this package is maintained for historical reasons. HiveR is a full package for creating hive plots.
This package provides a tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.
Generating fractional binomial random variables and computing density, cumulative distribution, and quantiles of fractional binomial distributions. (Lee, J. (2023) <arXiv:2209.01516>.).
Stores large arrays in files to avoid occupying large memories. Implemented with super fast gigabyte-level multi-threaded reading/writing via OpenMP'. Supports multiple non-character data types (double, float, complex, integer, logical, and raw).
Obtain Formula 1 data via the Jolpica API <https://jolpi.ca> and the unofficial API <https://www.formula1.com/en/timing/f1-live> via the fastf1 Python library <https://docs.fastf1.dev/>.
This package provides functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview.
Extend shiny.semantic with extra Fomantic UI components. Create pages in a format similar to shiny', form validation and more.
Quantify variability (such as confidence interval) of fertilizer response curves and optimum fertilizer rates using bootstrapping residuals with several popular non-linear and linear models.
This package provides a bundle of analytics tools for fisheries scientists. A shiny R App is included for a no-code solution for retrieval, analysis, and visualization.
Creation of an input model (fitted distribution) via the frequentist model averaging (FMA) approach and generate random-variates from the distribution specified by "myfit" which is the fitted input model via the FMA approach. See W. X. Jiang and B. L. Nelson (2018), "Better Input Modeling via Model Averaging," Proceedings of the 2018 Winter Simulation Conference, IEEE Press, 1575-1586.
Simulates and fits semiparametric shared frailty models under a wide range of frailty distributions using a consistent and asymptotically-normal estimator. Currently supports: gamma, power variance function, log-normal, and inverse Gaussian frailty models.
Extracts features from biological sequences. It contains most features which are presented in related work and also includes features which have never been introduced before. It extracts numerous features from nucleotide and peptide sequences. Each feature converts the input sequences to discrete numbers in order to use them as predictors in machine learning models. There are many features and information which are hidden inside a sequence. Utilizing the package, users can convert biological sequences to discrete models based on chosen properties. References: iLearn Z. Chen et al. (2019) <DOI:10.1093/bib/bbz041>. iFeature Z. Chen et al. (2018) <DOI:10.1093/bioinformatics/bty140>. <https://CRAN.R-project.org/package=rDNAse>. PseKRAAC Y. Zuo et al. PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition (2017) <DOI:10.1093/bioinformatics/btw564>. iDNA6mA-PseKNC P. Feng et al. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC (2019) <DOI:10.1016/j.ygeno.2018.01.005>. I. Dubchak et al. Prediction of protein folding class using global description of amino acid sequence (1995) <DOI:10.1073/pnas.92.19.8700>. W. Chen et al. Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome (2015) <DOI:10.1038/srep13859>.
Several functions to compute indicators for organization and efficiency in visual foraging, multi-target visual search, and cancellation tasks. The current version of this package includes the following indicators: best-r, mean Inter-target Distance, Percentage Above Optimal (PAO) scan path, and intersections in the scan path. For more detailed descriptions, see Mark et al. (2004) <doi:10.1212/01.WNL.0000131947.08670.D4>.
This package provides design-based and model-based estimators for the population average marginal component effects in general factorial experiments, including conjoint analysis. The package also implements a series of recommendations offered in de la Cuesta, Egami, and Imai (2022) <doi:10.1017/pan.2020.40>, and Egami and Imai (2019) <doi:10.1080/01621459.2018.1476246>.
This package provides a set of function for clustering data observation with hybrid method Fuzzy ART and K-Means by Sengupta, Ghosh & Dan (2011) <doi:10.1080/0951192X.2011.602362>.
This package provides a collection of features, decomposition methods, statistical summaries and graphics functions for the analysing tidy time series data. The package name feasts is an acronym comprising of its key features: Feature Extraction And Statistics for Time Series.