Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The FastRCS algorithm of Vakili and Schmitt (2014) for robust fit of the multivariable linear regression model and outliers detection.
An interface for training Fuzzy DBScan with both Fuzzy Core and Fuzzy Border. Therefore, the package provides a method to initialize and run the algorithm and a function to predict new data w.t.h. of R6'. The package is build upon the paper "Fuzzy Extensions of the DBScan algorithm" from Ienco and Bordogna (2018) <doi:10.1007/s00500-016-2435-0>. A predict function assigns new data according to the same criteria as the algorithm itself. However, the prediction function freezes the algorithm to preserve the trained cluster structure and treats each new prediction object individually.
Implementation of the Interval Testing Procedure for functional data in different frameworks (i.e., one or two-population frameworks, functional linear models) by means of different basis expansions (i.e., B-spline, Fourier, and phase-amplitude Fourier). The current version of the package requires functional data evaluated on a uniform grid; it automatically projects each function on a chosen functional basis; it performs the entire family of multivariate tests; and, finally, it provides the matrix of the p-values of the previous tests and the vector of the corrected p-values. The functional basis, the coupled or uncoupled scenario, and the kind of test can be chosen by the user. The package provides also a plotting function creating a graphical output of the procedure: the p-value heat-map, the plot of the corrected p-values, and the plot of the functional data.
As in music, a fugue statistic repeats a theme in small variations. Here, the psi-function that defines an m-statistic is slightly altered to maintain the same design sensitivity in matched sets of different sizes. The main functions in the package are sen() and senCI(). For sensitivity analyses for m-statistics, see Rosenbaum (2007) Biometrics 63 456-464 <doi:10.1111/j.1541-0420.2006.00717.x>.
Turn numeric,data.frame,matrix into fraction form.
Create fake datasets that can be used for prototyping and teaching. This package provides a set of functions to generate fake data for a variety of data types, such as dates, addresses, and names. It can be used for prototyping (notably in shiny') or as a tool to teach data manipulation and data visualization.
Shed light on black box machine learning models by the help of model performance, variable importance, global surrogate models, ICE profiles, partial dependence (Friedman J. H. (2001) <doi:10.1214/aos/1013203451>), accumulated local effects (Apley D. W. (2016) <doi:10.48550/arXiv.1612.08468>), further effects plots, interaction strength, and variable contribution breakdown (Gosiewska and Biecek (2019) <doi:10.48550/arXiv.1903.11420>). All tools are implemented to work with case weights and allow for stratified analysis. Furthermore, multiple flashlights can be combined and analyzed together.
Probabilistic distance clustering (PD-clustering) is an iterative, distribution-free, probabilistic clustering method. PD-clustering assigns units to a cluster according to their probability of membership under the constraint that the product of the probability and the distance of each point to any cluster center is a constant. PD-clustering is a flexible method that can be used with elliptical clusters, outliers, or noisy data. PDQ is an extension of the algorithm for clusters of different sizes. GPDC and TPDC use a dissimilarity measure based on densities. Factor PD-clustering (FPDC) is a factor clustering method that involves a linear transformation of variables and a cluster optimizing the PD-clustering criterion. It works on high-dimensional data sets.
Perform robust inference based on applying Fast and Robust Bootstrap on robust estimators (Van Aelst and Willems (2013) <doi:10.18637/jss.v053.i03>). This method constitutes an alternative to ordinary bootstrap or asymptotic inference. procedures when using robust estimators such as S-, MM- or GS-estimators. The available methods are multivariate regression, principal component analysis and one-sample and two-sample Hotelling tests. It provides both the robust point estimates and uncertainty measures based on the fast and robust bootstrap.
Recent years have seen significant interest in neighborhood-based structural parameters that effectively represent the spatial characteristics of tree populations and forest communities, and possess strong applicability for guiding forestry practices. This package provides valuable information that enhances our understanding and analysis of the fine-scale spatial structure of tree populations and forest stands. Reference: Yan L, Tan W, Chai Z, et al (2019) <doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.03.007>.
For cleaning and analysis of graphs, such as animal closing force measurements. forceR was initially written and optimized to deal with insect bite force measurements, but can be used for any time series. Includes a full workflow to load, plot and crop data, correct amplifier and baseline drifts, identify individual peak shapes (bites), rescale (normalize) peak curves, and find best polynomial fits to describe and analyze force curve shapes.
The tools herein calculate, print, summarize and plot pairwise differences that result from generalized linear models, general linear hypothesis tests and multinomial logistic regression models. For more information, see Armstrong (2013) <doi:10.32614/RJ-2013-021>.
S4 classes for univariate and multivariate functional data with utility functions. See <doi:10.18637/jss.v093.i05> for a detailed description of the package functionalities and its interplay with the MFPCA package for multivariate functional principal component analysis <https://CRAN.R-project.org/package=MFPCA>.
Collect your data on digital marketing campaigns from Google Analytics using the Windsor.ai API <https://windsor.ai/api-fields/>.
This is a collection of R games and other funny stuff, such as the classic Mine sweeper and sliding puzzles.
Helpers for parsing out the R functions and packages used in R scripts and notebooks.
Fire behavior prediction models, including the Scott & Reinhardt's (2001) Rothermel Wildland Fire Modelling System <DOI:10.2737/RMRS-RP-29> and Alexander et al.'s (2006) Crown Fire Initiation & Spread model <DOI:10.1016/j.foreco.2006.08.174>. Also contains sample datasets, estimation of fire behavior prediction model inputs (e.g., fuel moisture, canopy characteristics, wind adjustment factor), results visualization, and methods to estimate fire weather hazard.
The fftab package stores Fourier coefficients in a tibble and allows their manipulation in various ways. Functions are available for converting between complex, rectangular ('re', im'), and polar ('mod', arg') representations, as well as for extracting components as vectors or matrices. Inputs can include vectors, time series, and arrays of arbitrary dimensions, which are restored to their original form when inverting the transform. Since fftab stores Fourier frequencies as columns in the tibble, many standard operations on spectral data can be easily performed using tidy packages like dplyr'.
FLR algorithm for classification.
This package provides a full set of fast data manipulation tools with a tidy front-end and a fast back-end using collapse and cheapr'.
For each feature, a score is computed that can be useful for feature selection. Several random subsets are sampled from the input data and for each random subset, various linear models are fitted using lars method. A score is assigned to each feature based on the tendency of LASSO in including that feature in the models.Finally, the average score and the models are returned as the output. The features with relatively low scores are recommended to be ignored because they can lead to overfitting of the model to the training data. Moreover, for each random subset, the best set of features in terms of global error is returned. They are useful for applying Bolasso, the alternative feature selection method that recommends the intersection of features subsets.
Given a set of parameters describing model dynamics and a corresponding cost function, FAMoS performs a dynamic forward-backward model selection on a specified selection criterion. It also applies a non-local swap search method. Works on any cost function. For detailed information see Gabel et al. (2019) <doi:10.1371/journal.pcbi.1007230>.
Some functions of ade4 and stats are combined in order to obtain a partition of the rows of a data table, with columns representing variables of scales: quantitative, qualitative or frequency. First, a principal axes method is performed and then, a combination of Ward agglomerative hierarchical classification and K-means is performed, using some of the first coordinates obtained from the previous principal axes method. In order to permit different weights of the elements to be clustered, the function kmeansW', programmed in C++, is included. It is a modification of kmeans'. Some graphical functions include the option: gg=FALSE'. When gg=TRUE', they use the ggplot2 and ggrepel packages to avoid the super-position of the labels.
Infrastrcture for creating rich, dynamic web content using R scripts while maintaining very fast response time.