Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use spectrophotometry measurements performed on insects as a way to infer pathogens virulence. Insect movements cause fluctuations in fluorescence signal, and functions are provided to estimate when the insect has died as the moment when variance in autofluorescence signal drops to zero. The package provides functions to obtain this estimate together with functions to import spectrophotometry data from a Biotek microplate reader. Details of the method are given in Parthuisot et al. (2018) <doi:10.1101/297929>.
R implementations of standard financial engineering codes; vanilla option pricing models such as Black-Scholes, Bachelier, CEV, and SABR.
Create local, regional, and global explanations for any machine learning model with forward marginal effects. You provide a model and data, and fmeffects computes feature effects. The package is based on the theory in: C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl, and C. Heumann (2022) <doi:10.48550/arXiv.2201.08837>.
This package provides core functions and utilities for packages and other code developed by Jordan Mark Barbone.
Spatio-temporal Fixation Pattern Analysis (FPA) is a new method of analyzing eye movement data, developed by Mr. Jinlu Cao under the supervision of Prof. Chen Hsuan-Chih at The Chinese University of Hong Kong, and Prof. Wang Suiping at the South China Normal Univeristy. The package "fpa" is a R implementation which makes FPA analysis much easier. There are four major functions in the package: ft2fp(), get_pattern(), plot_pattern(), and lineplot(). The function ft2fp() is the core function, which can complete all the preprocessing within moments. The other three functions are supportive functions which visualize the eye fixation patterns.
This package provides a mutual information estimator based on k-nearest neighbor method proposed by A. Kraskov, et al. (2004) <doi:10.1103/PhysRevE.69.066138> to measure general dependence and the time complexity for our estimator is only squared to the sample size, which is faster than other statistics. Besides, an implementation of mutual information based independence test is provided for analyzing multivariate data in Euclidean space (T B. Berrett, et al. (2019) <doi:10.1093/biomet/asz024>); furthermore, we extend it to tackle datasets in metric spaces.
Fuzzy forests, a new algorithm based on random forests, is designed to reduce the bias seen in random forest feature selection caused by the presence of correlated features. Fuzzy forests uses recursive feature elimination random forests to select features from separate blocks of correlated features where the correlation within each block of features is high and the correlation between blocks of features is low. One final random forest is fit using the surviving features. This package fits random forests using the randomForest package and allows for easy use of WGCNA to split features into distinct blocks. See D. Conn, Ngun, T., C. Ramirez, and G. Li (2019) <doi:10.18637/jss.v091.i09> for further details.
Implementations of the k-means, hierarchical agglomerative and DBSCAN clustering methods for functional data which allows for jointly aligning and clustering curves. It supports functional data defined on one-dimensional domains but possibly evaluating in multivariate codomains. It supports functional data defined in arrays but also via the fd and funData classes for functional data defined in the fda and funData packages respectively. It currently supports shift, dilation and affine warping functions for functional data defined on the real line and uses the SRVF framework to handle boundary-preserving warping for functional data defined on a specific interval. Main reference for the k-means algorithm: Sangalli L.M., Secchi P., Vantini S., Vitelli V. (2010) "k-mean alignment for curve clustering" <doi:10.1016/j.csda.2009.12.008>. Main reference for the SRVF framework: Tucker, J. D., Wu, W., & Srivastava, A. (2013) "Generative models for functional data using phase and amplitude separation" <doi:10.1016/j.csda.2012.12.001>.
Estimation of a dynamic lognormal - Generalized Pareto mixture via the Approximate Maximum Likelihood and the Cross-Entropy methods. See Bee, M. (2023) <doi:10.1016/j.csda.2023.107764>.
Perform mathematical operations on R formula (add, subtract, multiply, etc.) and substitute parts of formula.
This package provides tools to work with the Flexible Dirichlet distribution. The main features are an E-M algorithm for computing the maximum likelihood estimate of the parameter vector and a function based on conditional bootstrap to estimate its asymptotic variance-covariance matrix. It contains also functions to plot graphs, to generate random observations and to handle compositional data.
Create secure, encrypted, and password-protected static HTML documents that include the machinery for secure in-browser authentication and decryption.
Specialized solvers for combinatorial optimization problems in the Subset Sum family. The solvers differ from the mainstream in the options of (i) restricting subset size, (ii) bounding subset elements, (iii) mining real-value multisets with predefined subset sum errors, (iv) finding one or more subsets in limited time. A novel algorithm for mining the one-dimensional Subset Sum induced algorithms for the multi-Subset Sum and the multidimensional Subset Sum. The multi-threaded framework for the latter offers exact algorithms to the multidimensional Knapsack and the Generalized Assignment problems. Historical updates include (a) renewed implementation of the multi-Subset Sum, multidimensional Knapsack and Generalized Assignment solvers; (b) availability of bounding solution space in the multidimensional Subset Sum; (c) fundamental data structure and architectural changes for enhanced cache locality and better chance of SIMD vectorization; (d) option of mapping floating-point instance to compressed 64-bit integer instance with user-controlled precision loss, which could yield substantial speedup due to the dimension reduction and efficient compressed integer arithmetic via bit-manipulations; (e) distributed computing infrastructure for multidimensional subset sum; (f) arbitrary-precision zero-margin-of-error multidimensional Subset Sum accelerated by a simplified Bloom filter. The package contains a copy of xxHash from <https://github.com/Cyan4973/xxHash>. Package vignette (<doi:10.48550/arXiv.1612.04484>) detailed a few historical updates. Functions prefixed with aux (auxiliary) are independent implementations of published algorithms for solving optimization problems less relevant to Subset Sum.
Simplifies the process of importing and managing input-output matrices from Microsoft Excel into R, and provides a suite of functions for analysis. It leverages the R6 class for clean, memory-efficient object-oriented programming. Furthermore, all linear algebra computations are implemented in Rust to achieve highly optimized performance.
Open-source package for computing likelihood ratios in kinship testing and human identification cases. It has the core function of the software GENis, developed by Fundación Sadosky. It relies on a Bayesian Networks framework and is particularly well suited to efficiently perform large-size queries against databases of missing individuals.
Standard generalized additive models assume a response function, which induces an assumption on the shape of the distribution of the response. However, miss-specifying the response function results in biased estimates. Therefore in Spiegel et al. (2017) <doi:10.1007/s11222-017-9799-6> we propose to estimate the response function jointly with the covariate effects. This package provides the underlying functions to estimate these generalized additive models with flexible response functions. The estimation is based on an iterative algorithm. In the outer loop the response function is estimated, while in the inner loop the covariate effects are determined. For the response function a strictly monotone P-spline is used while the covariate effects are estimated based on a modified Fisher-Scoring algorithm. Overall the estimation relies on the mgcv'-package.
Authenticate users in Shiny applications using Google Firebase with any of the many methods provided; email and password, email link, or using a third-party provider such as Github', Twitter', or Google'. Use Firebase Storage to store files securely, and leverage Firebase Analytics to easily log events and better understand your audience.
This Rcpp'-based package implements highly efficient functions for the calculation of the Jonckheere-Terpstra statistic. It can be used for a variety of applications, including feature selection in machine learning problems, or to conduct genome-wide association studies (GWAS) with multiple quantitative phenotypes. The code leverages OpenMP directives for multi-core computing to reduce overall processing time.
This package provides plugins for setting up fiery apps as a reverse proxy. This allows you to use a fiery server as a front for multiple services or even work as a load-balancer.
Point and interval estimation in dual frame surveys. In contrast to classic sampling theory, where only one sampling frame is considered, dual frame methodology assumes that there are two frames available for sampling and that, overall, they cover the entire target population. Then, two probability samples (one from each frame) are drawn and information collected is suitably combined to get estimators of the parameter of interest.
Allows the user to execute interactively radial data envelopment analysis models. The user has the ability to upload a data frame, select the input/output variables, choose the technology assumption to adopt and decide whether to run an input or an output oriented model. When the model is executed a set of results are displayed which include efficiency scores, peers determination, scale efficiencies evaluation and slacks calculation. Fore more information about the theoretical background of the package, please refer to Bogetoft & Otto (2011) <doi:10.1007/978-1-4419-7961-2>.
This package provides a collection of functions designed to retrieve, filter and spatialize data from the Flora e Funga do Brasil dataset. For more information about the dataset, please visit <https://floradobrasil.jbrj.gov.br/consulta/>.
Implementation of the fast univariate inference approach (Cui et al. (2022) <doi:10.1080/10618600.2021.1950006>, Loewinger et al. (2024) <doi:10.7554/eLife.95802.2>) for fitting functional mixed models. User guides and Python package information can be found at <https://github.com/gloewing/photometry_FLMM>.
The user can directly compute and display false discovery rates from inputted p-values or z-scores under a variety of assumptions. p.fdr() computes FDRs, adjusted p-values and decision reject vectors from inputted p-values or z-values. get.pi0() estimates the proportion of data that are truly null. plot.p.fdr() plots the FDRs, adjusted p-values, and the raw p-values points against their rejection threshold lines.