Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Feature flags allow developers to turn features of their software on and off in form of configuration. This package provides functions for creating feature flags in code. It exposes an interface for defining own feature flags which are enabled based on custom criteria.
All data sets from "Forecasting: methods and applications" by Makridakis, Wheelwright & Hyndman (Wiley, 3rd ed., 1998) <https://robjhyndman.com/forecasting/>.
Developed by CDC/ATSDR (Centers for Disease Control and Prevention/ Agency for Toxic Substances and Disease Registry), Social Vulnerability Index (SVI) serves as a tool to assess the resilience of communities by taking into account socioeconomic and demographic factors. Provided with year(s), region(s) and a geographic level of interest, findSVI retrieves required variables from US census data and calculates SVI for communities in the specified area based on CDC/ATSDR SVI documentation. Reference for the calculation methods: Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B (2011) <doi:10.2202/1547-7355.1792>.
Easy way to plot regular/weighted/conditional distributions by using formulas. The core of the package concerns distribution plots which are automatic: the many options are tailored to the data at hand to offer the nicest and most meaningful graphs possible -- with no/minimum user input. Further provide functions to plot conditional trends and box plots. See <https://lrberge.github.io/fplot/> for more information.
This package implements the formulae required to calculate freedom from disease according to Cameron and Baldock (1998) <doi:10.1016/S0167-5877(97)00081-0>. These are the methods used at the Swedish national veterinary institute (SVA) to evaluate the performance of our nation animal disease surveillance programmes.
Perform Maximum Likelihood Factor analysis on a covariance matrix or data matrix.
Nonparametric estimators and tests for time series analysis. The functions use bootstrap techniques and robust nonparametric difference-based estimators to test for the presence of possibly non-monotonic trends and for synchronicity of trends in multiple time series.
FASTQC is the most widely used tool for evaluating the quality of high throughput sequencing data. It produces, for each sample, an html report and a compressed file containing the raw data. If you have hundreds of samples, you are not going to open up each HTML page. You need some way of looking at these data in aggregate. fastqcr Provides helper functions to easily parse, aggregate and analyze FastQC reports for large numbers of samples. It provides a convenient solution for building a Multi-QC report, as well as, a one-sample report with result interpretations.
Shiny apps can often make use of the same key elements, this package provides modules for common tasks (data upload, wrangling data, figure generation and saving the app state), and also a framework for developing. These modules can react and interact as well as generate code to create reproducible analyses.
Simulates and fits semiparametric shared frailty models under a wide range of frailty distributions using a consistent and asymptotically-normal estimator. Currently supports: gamma, power variance function, log-normal, and inverse Gaussian frailty models.
Convenient functions for ensemble forecasts in R combining approaches from the forecast package. Forecasts generated from auto.arima(), ets(), thetaf(), nnetar(), stlm(), tbats(), snaive() and arfima() can be combined with equal weights, weights based on in-sample errors (introduced by Bates & Granger (1969) <doi:10.1057/jors.1969.103>), or cross-validated weights. Cross validation for time series data with user-supplied models and forecasting functions is also supported to evaluate model accuracy.
Returns the noncentrality parameter of the noncentral F distribution if probability of type I and type II error, degrees of freedom of the numerator and the denominator are given. It may be useful for computing minimal detectable differences for general ANOVA models. This program is documented in the paper of A. Baharev, S. Kemeny, On the computation of the noncentral F and noncentral beta distribution; Statistics and Computing, 2008, 18 (3), 333-340.
This package provides a shiny design of experiments (DOE) app that aids in the creation of traditional, un-replicated, augmented and partially-replicated designs applied to agriculture, plant breeding, forestry, animal and biological sciences.
This package provides four addons for analyzing trends and unit roots in financial time series: (i) functions for the density and probability of the augmented Dickey-Fuller Test, (ii) functions for the density and probability of MacKinnon's unit root test statistics, (iii) reimplementations for the ADF and MacKinnon Test, and (iv) an urca Unit Root Test Interface for Pfaff's unit root test suite.
Extend shiny.semantic with extra Fomantic UI components. Create pages in a format similar to shiny', form validation and more.
This package implements various methods for estimating fractal dimension of time series and 2-dimensional data <doi:10.1214/11-STS370>.
Simplifies the process of importing and managing input-output matrices from Microsoft Excel into R, and provides a suite of functions for analysis. It leverages the R6 class for clean, memory-efficient object-oriented programming. Furthermore, all linear algebra computations are implemented in Rust to achieve highly optimized performance.
This package implements the algorithm by Briefs and Bläser (2025) <https://openreview.net/forum?id=8PHOPPH35D>, based on the approach of Gupta and Bläser (2024) <doi:10.1609/aaai.v38i18.30023>. It determines, for a structural causal model (SCM) whose directed edges form a tree, whether each parameter is unidentifiable, 1-identifiable or 2-identifiable (other cases cannot occur), using a randomized algorithm with provable running time O(n^3 log^2 n).
This is a method for Allele-specific DNA Copy Number Profiling using Next-Generation Sequencing. Given the allele-specific coverage at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual.
Allows to estimate dynamic model averaging, dynamic model selection and median probability model. The original methods are implemented, as well as, selected further modifications of these methods. In particular the user might choose between recursive moment estimation and exponentially moving average for variance updating. Inclusion probabilities might be modified in a way using Google Trends'. The code is written in a way which minimises the computational burden (which is quite an obstacle for dynamic model averaging if many variables are used). For example, this package allows for parallel computations and Occam's window approach. The package is designed in a way that is hoped to be especially useful in economics and finance. Main reference: Raftery, A.E., Karny, M., Ettler, P. (2010) <doi:10.1198/TECH.2009.08104>.
Efficient computation of the Liu regression coefficient paths, Liu-related statistics and information criteria for a grid of the regularization parameter. The computations are based on the C++ library Armadillo through the R package Rcpp'.
Construction, calculation and display of fault trees. Methods derived from Clifton A. Ericson II (2005, ISBN: 9780471739425) <DOI:10.1002/0471739421>, Antoine Rauzy (1993) <DOI:10.1016/0951-8320(93)90060-C>, Tim Bedford and Roger Cooke (2012, ISBN: 9780511813597) <DOI:10.1017/CBO9780511813597>, Nikolaos Limnios, (2007, ISBN: 9780470612484) <DOI: 10.1002/9780470612484>.
This package implements the Mode Jumping Markov Chain Monte Carlo algorithm described in <doi:10.1016/j.csda.2018.05.020> and its Genetically Modified counterpart described in <doi:10.1613/jair.1.13047> as well as the sub-sampling versions described in <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging.
Generating fractional binomial random variables and computing density, cumulative distribution, and quantiles of fractional binomial distributions. (Lee, J. (2023) <arXiv:2209.01516>.).