This package provides tools to work with template code and text in R. It aims to provide a simple substitution mechanism for R-expressions inside these templates. Templates can be written in other languages like SQL', can simply be represented by characters in R, or can themselves be R-expressions or functions.
This package implements sampling, iteration, and input of FASTQ files. It includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats.
This package provides a pure data-driven gene network, WGCN(weighted gene co-expression network) could be constructed only from expression profile. Different layers in such networks may represent different time points, multiple conditions or various species. AMOUNTAIN aims to search active modules in multi-layer WGCN using a continuous optimization approach.
This package provides an R implementation of an extension of the BayeScan software for codominant markers, adding the option to group individual SNPs into pre-defined blocks. A typical application of this new approach is the identification of genomic regions, genes, or gene sets containing one or more SNPs that evolved under directional selection.
This package provides miscellaneous small tools and utilities. Many of them facilitate the work with matrices, e.g. inserting rows or columns, creating symmetric matrices, or checking for semidefiniteness. Other tools facilitate the work with regression models, e.g. extracting the standard errors, obtaining the number of (estimated) parameters, or calculating R-squared values.
The appreci8R is an R version of our appreci8-algorithm - A Pipeline for PREcise variant Calling Integrating 8 tools. Variant calling results of our standard appreci8-tools (GATK, Platypus, VarScan, FreeBayes, LoFreq, SNVer, samtools and VarDict), as well as up to 5 additional tools is combined, evaluated and filtered.
The bugsigdbr package implements convenient access to bugsigdb.org from within R/Bioconductor. The goal of the package is to facilitate import of BugSigDB data into R/Bioconductor, provide utilities for extracting microbe signatures, and enable export of the extracted signatures to plain text files in standard file formats such as GMT.
transmogR provides the tools needed to crate a new reference genome or reference transcriptome, using a set of variants. Variants can be any combination of SNPs, Insertions and Deletions. The intended use-case is to enable creation of variant-modified reference transcriptomes for incorporation into transcriptomic pseudo-alignment workflows, such as salmon.
The tidyomics ecosystem is a set of packages for ’omic data analysis that work together in harmony; they share common data representations and API design, consistent with the tidyverse ecosystem. The tidyomics package is designed to make it easy to install and load core packages from the tidyomics ecosystem with a single command.
Frequentist inference on adaptively generated data. The methods implemented are based on Zhan et al. (2021) <doi:10.48550/arXiv.2106.02029> and Hadad et al. (2021) <doi:10.48550/arXiv.1911.02768>. For illustration, several functions for simulating non-contextual and contextual adaptive experiments using Thompson sampling are also supplied.
This package provides functions for computing the one-sided p-values of the Cochran-Armitage trend test statistic for the asymptotic and the exact conditional test. The computation of the p-value for the exact test is performed using an algorithm following an idea by Mehta, et al. (1992) <doi:10.2307/1390598>.
Record and generate a gif of your R sessions plots. When creating a visualization, there is inevitably iteration and refinement that occurs. Automatically save the plots made to a specified directory, previewing them as they would be saved. Then combine all plots generated into a gif to show the plot refinement over time.
Fork of calendR R package to generate ready to print calendars with ggplot2 (see <https://r-coder.com/calendar-plot-r/>) with additional features (backwards compatible). calendRio provides a calendR() function that serves as a drop-in replacement for the upstream version but allows for additional parameters unlocking extra functionality.
Dynamic Reservoir Simulation Model (DYRESM) and Computational Aquatic Ecosystem Dynamics Model (CAEDYM) model development, including assisting with calibrating selected model parameters and visualising model output through time series plot, profile plot, contour plot, and scatter plot. For more details, see Yu et al. (2023) <https://journal.r-project.org/articles/RJ-2023-008/>.
This package provides methods to simulate and analyse the size and length of branching processes with an arbitrary offspring distribution. These can be used, for example, to analyse the distribution of chain sizes or length of infectious disease outbreaks, as discussed in Farrington et al. (2003) <doi:10.1093/biostatistics/4.2.279>.
This package provides step-by-step automation for integrating biodiversity data from multiple online aggregators, merging and cleaning datasets while addressing challenges such as taxonomic inconsistencies, georeferencing issues, and spatial or environmental outliers. Includes functions to extract environmental data and to define the biogeographic ranges in which species are most likely to occur.
Construction, calculation and display of fault trees. Methods derived from Clifton A. Ericson II (2005, ISBN: 9780471739425) <DOI:10.1002/0471739421>, Antoine Rauzy (1993) <DOI:10.1016/0951-8320(93)90060-C>, Tim Bedford and Roger Cooke (2012, ISBN: 9780511813597) <DOI:10.1017/CBO9780511813597>, Nikolaos Limnios, (2007, ISBN: 9780470612484) <DOI: 10.1002/9780470612484>.
Additional annotations, stats, geoms and scales for plotting "light" spectra with ggplot2', together with specializations of ggplot() and autoplot() methods for spectral data and waveband definitions stored in objects of classes defined in package photobiology'. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
The getDTeval() function facilitates the translation of the original coding statement to an optimized form for improved runtime efficiency without compromising on the programmatic coding design. The function can either provide a translation of the coding statement, directly evaluate the translation to return a coding result, or provide both of these outputs.
Two novel matching-based methods for estimating group average treatment effects (GATEs). The match_y1y0() and match_y1y0_bc() functions are used for imputing the potential outcomes based on matching and bias-corrected matching techniques, respectively. The EstGATE() function is employed to estimate the GATE after imputing the potential outcomes.
This package provides tools for analyzing Marshall-Olkin shock models semi-independent time. It includes interactive shiny applications for exploring copula-based dependence structures, along with functions for modeling and visualization. The methods are based on Mijanovic and Popovic (2024, submitted) "An R package for Marshall-Olkin shock models with semi-independent times.".
It implements the online Bayesian methods for change point analysis. It can also perform missing data imputation with methods from VIM'. The reference is Yigiter A, Chen J, An L, Danacioglu N (2015) <doi:10.1080/02664763.2014.1001330>. The link to the package is <https://CRAN.R-project.org/package=onlineBcp>.
Run simulations or other functions while easily varying parameters from one iteration to the next. Some common use cases would be grid search for machine learning algorithms, running sets of simulations (e.g., estimating statistical power for complex models), or bootstrapping under various conditions. See the paramtest documentation for more information and examples.
Nomograms are constructed to predict the cumulative incidence rate which is calculated after adjusting for competing causes to the event of interest. K-fold cross-validation is implemented to validate predictive accuracy using a competing-risk version of the concordance index. Methods are as described in: Kattan MW, Heller G, Brennan MF (2003).