Fits semiparametric linear and multilevel models with non-parametric additive Bayesian additive regression tree (BART; Chipman, George, and McCulloch
(2010) <doi:10.1214/09-AOAS285>) components and Stan (Stan Development Team (2021) <https://mc-stan.org/>) sampled parametric ones. Multilevel models can be expressed using lme4 syntax (Bates, Maechler, Bolker, and Walker (2015) <doi:10.18637/jss.v067.i01>).
This package provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
This package provides a container for data used by the usmap package. The data used by usmap has been extracted into this package so that the file size of the usmap package can be reduced greatly. The data in this package will be updated roughly once per year as new map data files are provided by the US Census Bureau.
Simplifies functions assess normality for bivariate and multivariate statistical techniques. Includes functions designed to replicate plots and tables that would result from similar calls in SPSS', including hst()
, box()
, qq()
, tab()
, cormat()
, and residplot()
. Also includes simplified formulae, such as mode()
, scatter()
, p.corr()
, ow.anova()
, and rm.anova()
.
Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here <doi:10.1007/s11222-016-9670-1>). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.
This package provides an R API and htmlwidget
facilitating interactive visualization of spatial single-cell data with Vitessce. The R API contains classes and functions for loading single-cell data stored in compatible on-disk formats. The htmlwidget
is a wrapper around the Vitessce JavaScript library and can be used in the Viewer tab of RStudio or Shiny apps.
The ACE file format is used in genomics to store contigs from sequencing machines. This tools converts it into FASTQ format. Both formats contain the sequence characters and their corresponding quality information. Unlike the FASTQ file, the ACE file stores the quality values numerically. The conversion algorithm uses the standard Sanger formula. The package facilitates insertion into pipelines, and content inspection.
This package provides a collection of tools to evaluate probability density functions, cumulative distribution functions, quantile functions and random numbers for truncated random variables. These functions are provided to also compute the expected value and variance. Q-Q plots can be produced. All the probability functions in the stats, stats4 and evd packages are automatically available for truncation.
Box-Cox-type transformations for linear and logistic models with random effects using non-parametric profile maximum likelihood estimation, as introduced in Almohaimeed (2018) <http://etheses.dur.ac.uk/12831/> and Almohaimeed and Einbeck (2022) <doi:10.1177/1471082X20966919>. The main functions are optim.boxcox()
for linear models with random effects and boxcoxtype()
for logistic models with random effects.
Assists in the set-up of algorithms for Bayesian inference of vector autoregressive (VAR) and error correction (VEC) models. Functions for posterior simulation, forecasting, impulse response analysis and forecast error variance decomposition are largely based on the introductory texts of Chan, Koop, Poirier and Tobias (2019, ISBN: 9781108437493), Koop and Korobilis (2010) <doi:10.1561/0800000013> and Luetkepohl (2006, ISBN: 9783540262398).
Compute ranking and rating based on competition results. Methods of different nature are implemented: with fixed Head-to-Head structure, with variable Head-to-Head structure and with iterative nature. All algorithms are taken from the book Whoâ s #1?: The science of rating and ranking by Amy N. Langville and Carl D. Meyer (2012, ISBN:978-0-691-15422-0).
Computes discrete fast Fourier transform of river discharge data and the derived metrics. The methods are described in J. L. Sabo, D. M. Post (2008) <doi:10.1890/06-1340.1> and J. L. Sabo, A. Ruhi, G. W. Holtgrieve, V. Elliott, M. E. Arias, P. B. Ngor, T. A. Räsänsen, S. Nam (2017) <doi:10.1126/science.aao1053>.
Given a set of predictive quantiles from a distribution, estimate the distribution and create `d`, `p`, `q`, and `r` functions to evaluate its density function, distribution function, and quantile function, and generate random samples. On the interior of the provided quantiles, an interpolation method such as a monotonic cubic spline is used; the tails are approximated by a location-scale family.
Test hypotheses and construct confidence intervals for AUC (area under Receiver Operating Characteristic curve) and pAUC
(partial area under ROC curve), from the given two samples of test data with disease/healthy subjects. The method used is based on TWO SAMPLE empirical likelihood and PROFILE empirical likelihood, as described in <https://www.ms.uky.edu/~mai/research/eAUC1.pdf>
.
Simulating single cell RNA-seq data with complicated structure. This package is developed based on the Splat method (Zappia, Phipson and Oshlack (2017) <doi:10.1186/s13059-017-1305-0>). GeneScape
incorporates additional features to simulate single cell RNA-seq data with complicated differential expression and correlation structures, such as sub-cell-types, correlated genes (pathway genes) and hub genes.
Estimation of the cutpoint defined by the Generalized Symmetry point in a binary classification setting based on a continuous diagnostic test or marker. Two methods have been implemented to construct confidence intervals for this optimal cutpoint, one based on the Generalized Pivotal Quantity and the other based on Empirical Likelihood. Numerical and graphical outputs for these two methods are easily obtained.
Estimation procedures and goodness-of-fit test for several Markov regime switching models and mixtures of bivariate copula models. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses Rosenblatt's transform and parametric bootstrap to estimate the p-value. The proposed methodologies are described in Nasri, Remillard and Thioub (2020) <doi:10.1002/cjs.11534>.
This package provides a low-dependency implementation of GSIF::mpspline()
<https://r-forge.r-project.org/scm/viewvc.php/pkg/R/mpspline.R?view=markup&revision=240&root=gsif>, which applies a mass-preserving spline to soil attributes. Splining soil data is a safe way to make continuous down-profile estimates of attributes measured over discrete, often discontinuous depth intervals.
This package provides a simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>.
Send requests to the PurpleAir
Application Programming Interface (API; <https://community.purpleair.com/c/data/api/18>). Check a PurpleAir
API key and get information about the related organization. Download real-time data from a single PurpleAir
sensor or many sensors by sensor identifier, geographical bounding box, or time since modified. Download historical data from a single sensor.
Prediction limits for the Poisson distribution are produced from both frequentist and Bayesian viewpoints. Limiting results are provided in a Bayesian setting with uniform, Jeffreys and gamma as prior distributions. More details on the methodology are discussed in Bejleri and Nandram (2018) <doi:10.1080/03610926.2017.1373814> and Bejleri, Sartore and Nandram (2021) <doi:10.1007/s42952-021-00157-x>.
This package provides a user-friendly wrapper for web automation, using either chromote or selenium'. Provides a simple and consistent API to make web scraping and testing scripts easy to write and understand. Elements are lazy, and automatically wait for the website to be valid, resulting in reliable and reproducible code, with no visible impact on the experience of the programmer.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
Aggregates large single-cell data into metacell dataset by merging together gene expression of very similar cells. SuperCell
uses velocyto.R <doi:10.1038/s41586-018-0414-6> <https://github.com/velocyto-team/velocyto.R> for RNA velocity. We also recommend installing scater Bioconductor package <doi:10.18129/B9.bioc.scater> <https://bioconductor.org/packages/release/bioc/html/scater.html>.