The US Census Bureau provides a seasonal adjustment program now called X-13ARIMA-SEATS building on both earlier programs called X-11 and X-12 as well as the SEATS program by the Bank of Spain. The US Census Bureau offers both source and binary versions -- which this package integrates for use by other R packages.
The main function kcca implements a general framework for k-centroids cluster analysis supporting arbitrary distance measures and centroid computation. Further cluster methods include hard competitive learning, neural gas, and QT clustering. There are numerous visualization methods for cluster results (neighborhood graphs, convex cluster hulls, barcharts of centroids, ...), and bootstrap methods for the analysis of cluster stability.
Byebug is a Ruby 2 debugger implemented using the Ruby 2 TracePoint C API for execution control and the Debug Inspector C API for call stack navigation. The core component provides support that front-ends can build on. It provides breakpoint handling and bindings for stack frames among other things and it comes with a command line interface.
This package includes gene set collections that are used for the Ensemble of Gene Set Enrichment Analyses (EGSEA) method for gene set testing. It includes Human and Mouse versions of the MSidDB (Subramanian, et al. (2005) PNAS, 102(43):15545-15550) and GeneSetDB (Araki, et al. (2012) FEBS Open Bio, 2:76-82) collections.
This package provides an interface to any collection of data sets within a single iSEE web-application. The main functionality of this package is to define a custom landing page allowing app maintainers to list a custom collection of data sets that users can selected from and directly load objects into an iSEE web-application.
This package provides a fast, convenient tool to identify the TSSs of miRNAs by integrating the data of H3K4me3 and Pol II as well as combining the conservation level and sequence feature, provided within both command-line and graphical interfaces, which achieves a better performance than the previous non-cell-specific methods on miRNA TSSs.
survClust is an outcome weighted integrative clustering algorithm used to classify multi-omic samples on their available time to event information. The resulting clusters are cross-validated to avoid over overfitting and output classification of samples that are molecularly distinct and clinically meaningful. It takes in binary (mutation) as well as continuous data (other omic types).
Enables sampling from arbitrary distributions if the log density is known up to a constant; a common situation in the context of Bayesian inference. The implemented sampling algorithm was proposed by Vihola (2012) <DOI:10.1007/s11222-011-9269-5> and achieves often a high efficiency by tuning the proposal distributions to a user defined acceptance rate.
This package provides functions to prepare tidy objects from estimated models via BVAR (see Kuschnig & Vashold, 2019 <doi:10.13140/RG.2.2.25541.60643>) and visualisation thereof. Bridges the gap between estimating models with BVAR and plotting the results in a more sophisticated way with ggplot2 as well as passing them on in a tidy format.
This package contains several Bayesian models for data analysis of psychological tests. A user friendly interface for these models should enable students and researchers to perform professional level Bayesian data analysis without advanced knowledge in programming and Bayesian statistics. This package is based on the Stan platform (Carpenter et el. 2017 <doi:10.18637/jss.v076.i01>).
This package provides spatial data for mapping Brunei, including boundaries for districts, mukims, and kampongs, as well as locations of key infrastructure such as masjids, hospitals, clinics, and schools. The package supports researchers, analysts, and developers working with Bruneiâ s geographic and demographic data, offering a quick and accessible foundation for creating maps and conducting spatial studies.
Fits predictive and symmetric co-correspondence analysis (CoCA) models to relate one data matrix to another data matrix. More specifically, CoCA maximises the weighted covariance between the weighted averaged species scores of one community and the weighted averaged species scores of another community. CoCA attempts to find patterns that are common to both communities.
This hosts the findRFM function which generates RFM scores on a 1-5 point scale for customer transaction data. The function consumes a data frame with Transaction Number, Customer ID, Date of Purchase (in date format) and Amount of Purchase as the attributes. The function returns a data frame with RFM data for the sales information.
Bayesian estimation of spatial weight matrices in spatial econometric panel models. Allows for estimation of spatial autoregressive (SAR), spatial error (SEM), spatial Durbin (SDM), spatial error Durbin (SDEM) and spatially lagged explanatory variable (SLX) type specifications featuring an unknown spatial weight matrix. Methodological details are given in Krisztin and Piribauer (2022) <doi:10.1080/17421772.2022.2095426>.
Mapping tools that convert place names to coordinates on the fly. These ggplot2 extensions make maps from a data frame where one of the columns contains place names, without having to directly work with the underlying geospatial data and tools. The corresponding map data must be registered with cartographer either by the user or by another package.
Package that simplifies the use of the HPZone API. Most of the annoying and labor-intensive parts of the interface are handled by wrapper functions. Note that the API and its details are not publicly available. Information can be found at <https://www.ggdghorkennisnet.nl/groep/726-platform-infectieziekte-epidemiologen/documenten/map/9609> for those with access.
This package implements the simpler and faster heat index, which matches the values of the original 1979 heat index and its 2022 extension for air temperatures above 300 K (27 C, 80 F) and with only minor differences at lower temperatures. Also implements an algorithm for calculating the thermodynamic (and psychrometric) wet-bulb (and ice-bulb) temperature.
Bayesian Survival models via the mixture of Log-Normal distribution extends the well-known survival models and accommodates different behaviour over time and considers higher censored survival times. The proposal combines mixture distributions Fruhwirth-Schnatter(2006) <doi:10.1007/s11336-009-9121-4>, and data augmentation techniques Tanner and Wong (1987) <doi:10.1080/01621459.1987.10478458>.
Local linear estimation of psychometric functions. Provides functions for nonparametric estimation of a psychometric function and for estimation of a derived threshold and slope, and their standard deviations and confidence intervals.For more details see Zychaluk and Foster (2009) <doi:10.3758/APP.71.6.1414> and Foster and Zychaluk (2007) <doi:10.1109/MSP.2007.4286564>.
Implementation of Warnes & Raftery's MCGibbsit run-length and convergence diagnostic for a set of (not-necessarily independent) Markov Chain Monte Carlo (MCMC) samplers. It combines the quantile estimate error-bounding approach of the Raftery and Lewis MCMC run length diagnostic `gibbsit` with the between verses within chain approach of the Gelman and Rubin MCMC convergence diagnostic.
Programmatic interface to several NASA Earth Observation OPeNDAP servers (Open-source Project for a Network Data Access Protocol) (<https://www.opendap.org/>). Allows for easy downloads of MODIS subsets, as well as other Earth Observation datacubes, in a time-saving and efficient way : by sampling it at the very downloading phase (spatially, temporally and dimensionally).
Normalize data to minimize the difference between sample plates (batch effects). For given data in a matrix and grouping variable (or plate), the function normn_MA normalizes the data on MA coordinates. More details are in the citation. The primary method is Multi-MA'. Other fitting functions on MA coordinates can also be employed e.g. loess.
This package provides methods for the analysis of how ecological drivers affect the multifunctionality of an ecosystem based on methods of Byrnes et al. 2016 <doi:10.1111/2041-210X.12143> and Byrnes et al. 2022 <doi:10.1101/2022.03.17.484802>. Most standard methods in the literature are implemented (see vignettes) in a tidy format.
Implementation of commonly used p-value-based and parametric multiple testing procedures (computation of adjusted p-values and simultaneous confidence intervals) and parallel gatekeeping procedures based on the methodology presented in the book "Multiple Testing Problems in Pharmaceutical Statistics" (edited by Alex Dmitrienko, Ajit C. Tamhane and Frank Bretz) published by Chapman and Hall/CRC Press 2009.