This package provides methods for the group testing identification problem: 1) Operating characteristics (e.g., expected number of tests) for commonly used hierarchical and array-based algorithms, and 2) Optimal testing configurations for these same algorithms. Methods for the group testing estimation problem: 1) Estimation and inference procedures for an overall prevalence, and 2) Regression modeling for commonly used hierarchical and array-based algorithms.
Reads demographic data from a variety of public data sources, extracting and harmonizing variables useful for the study of childfree individuals. The identification of childfree individuals and those with other family statuses uses Neal & Neal's (2024) "A Framework for Studying Adults who Neither have Nor Want Children" <doi:10.1177/10664807231198869>; A pre-print is available at <doi:10.31234/osf.io/fa89m>.
Reads European Data Format files EDF and EDF+, see <http://www.edfplus.info>, BioSemi
Data Format files BDF, see <http://www.biosemi.com/faq/file_format.htm>, and BDF+ files, see <http://www.teuniz.net/edfbrowser/bdfplus%20format%20description.html>. The files are read in two steps: first the header is read and then the signals (using the header object as a parameter).
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>
).
Understanding how features influence a specific response variable becomes crucial in classification problems, with applications ranging from medical diagnosis to customer behavior analysis. This packages provides tools to compute such an influence measure grounded on game theory concepts. In particular, the influence measures presented in Davila-Pena, Saavedra-Nieves, and Casas-Méndez (2024) <doi:10.48550/arXiv.2408.02481>
can be obtained.
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival Data with toxicokinetics toxicodynamics (TKTD) models. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See models description in Jager et al. (2011) <doi:10.1021/es103092a> and implementation using Bayesian inference in Baudrot and Charles (2019) <doi:10.1038/s41598-019-47698-0>.
The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 <doi:10.3389/fevo.2021.588292>) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.
Tests one hypothesis with several test statistics, correcting for multiple testing. The central function in the package is testtwice()
. In a sensitivity analysis, the method has the largest design sensitivity of its component tests. The package implements the method and examples in Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.
Construct a Canonical Variate Analysis Biplot via the Generalised Singular Value Decomposition, for cases when the number of samples is less than the number of variables. For more information on biplots, see Gower JC, Lubbe SG, Le Roux NJ (2011) <doi:10.1002/9780470973196> and for more information on the generalised singular value decomposition, see Edelman A, Wang Y (2020) <doi:10.1137/18M1234412>.
bioassayR is a computational tool that enables simultaneous analysis of thousands of bioassay experiments performed over a diverse set of compounds and biological targets. Unique features include support for large-scale cross-target analyses of both public and custom bioassays, generation of high throughput screening fingerprints (HTSFPs), and an optional preloaded database that provides access to a substantial portion of publicly available bioactivity data.
This package provides a minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates.
This package provides tools to convert plot function calls (using expression or formula) to grob
or ggplot
objects that are compatible with the grid
and ggplot2
environment. With this package, we are able to e.g. use cowplot
to align plots produced by base
graphics, grid
, lattice
, vcd
etc. by converting them to ggplot
objects.
This package provides a graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the Shiny web application framework and works with the output of MCMC programs written in any programming language (and has extended functionality for Stan models fit using the rstan
and rstanarm
packages).
This package provides a simple driver that reads binary data created by the ASD Inc. portable spectrometer instruments, such as the FieldSpec
(for more information, see <http://www.asdi.com/products/fieldspec-spectroradiometers>). Spectral data can be extracted from the ASD files as raw (DN), white reference, radiance, or reflectance. Additionally, the metadata information contained in the ASD file header can also be accessed.
ACE (Advanced Cohort Engine) is a powerful tool that allows constructing cohorts of patients extremely quickly and efficiently. This package is designed to interface directly with an instance of ACE search engine and facilitates API queries and data dumps. Prerequisite is a good knowledge of the temporal language to be able to efficiently construct a query. More information available at <https://shahlab.stanford.edu/start>.
Create an addin in Rstudio to do fill-in-the-middle (FIM) and chat with latest Mistral AI models for coding, Codestral and Codestral Mamba'. For more details about Mistral AI API': <https://docs.mistral.ai/getting-started/quickstart/> and <https://docs.mistral.ai/api/>. For more details about Codestral model: <https://mistral.ai/news/codestral>; about Codestral Mamba': <https://mistral.ai/news/codestral-mamba>.
This package provides a lightweight data validation and testing toolkit for R. Its guiding philosophy is that adding code-based data checks to users existing workflow should be both quick and intuitive. The suite of functions included therefore mirror the common data checks many users already perform by hand or by eye. Additionally, the checkthat package is optimized to work within tidyverse data manipulation pipelines.
The goal of dataspice is to make it easier for researchers to create basic, lightweight, and concise metadata files for their datasets. These basic files can then be used to make useful information available during analysis, create a helpful dataset "README" webpage, and produce more complex metadata formats to aid dataset discovery. Metadata fields are based on the Schema.org and Ecological Metadata Language standards.
This package creates participant flow diagrams directly from a dataframe. Representing the flow of participants through each stage of a study, especially in clinical trials, is essential to assess the generalisability and validity of the results. This package provides a set of functions that can be combined with a pipe operator to create all kinds of flowcharts from a data frame in an easy way.
Recursive partitioning based on (generalized) linear mixed models (GLMMs) combining lmer()/glmer()
from lme4 and lmtree()/glmtree()
from partykit'. The fitting algorithm is described in more detail in Fokkema, Smits, Zeileis, Hothorn & Kelderman (2018; <DOI:10.3758/s13428-017-0971-x>). For detecting and modeling subgroups in growth curves with GLMM trees see Fokkema & Zeileis (2024; <DOI:10.3758/s13428-024-02389-1>).
Cluster sampling is a valuable approach when constructing a comprehensive list of individual units is challenging. It provides operational and cost advantages. This package is designed to test the efficiency of cluster sampling in terms cluster variance and design effect in context to crop surveys. This package has been developed using the algorithm of Iqbal et al. (2018) <doi:10.19080/BBOAJ.2018.05.555673>.
Lake temperature records, metadata, and climate drivers for 291 global lakes during the time period 1985-2009. Temperature observations were collected using satellite and in situ methods. Climatic drivers and geomorphometric characteristics were also compiled and are included for each lake. Data are part of the associated publication from the Global Lake Temperature Collaboration project (http://www.laketemperature.org). See citation('laketemps') for dataset attribution.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC
) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.
Characterization of a mid-summer drought (MSD) with precipitation based statistics. The MSD is a phenomenon of decreased rainfall during a typical rainy season. It is a feature of rainfall in much of Central America and is also found in other locations, typically those with a Mediterranean climate. Details on the metrics are in Maurer et al. (2022) <doi:10.5194/hess-26-1425-2022>.