Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Special procedures for the imputation of missing fuzzy numbers are still underdeveloped. The goal of the package is to provide the new d-imputation method (DIMP for short, Romaniuk, M. and Grzegorzewski, P. (2023) "Fuzzy Data Imputation with DIMP and FGAIN" RB/23/2023) and covert some classical ones applied in R packages ('missForest','miceRanger','knn') for use with fuzzy datasets. Additionally, specially tailored benchmarking tests are provided to check and compare these imputation procedures with fuzzy datasets.
Fit occupancy models in Stan via brms'. The full variety of brms formula-based effects structures are available to use in multiple classes of occupancy model, including single-season models, models with data augmentation for never-observed species, dynamic (multiseason) models with explicit colonization and extinction processes, and dynamic models with autologistic occupancy dynamics. Formulas can be specified for all relevant distributional terms, including detection and one or more of occupancy, colonization, extinction, and autologistic depending on the model type. Several important forms of model post-processing are provided. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Socolar & Mills (2023) <doi:10.1101/2023.10.26.564080>.
Contingency Tables are a pain to work with when you want to run regressions. This package takes them, flattens them into a long data frame, so you can more easily analyse them! As well, you can calculate other related statistics. All of this is done so in a tidy manner, so it should tie in nicely with tidyverse series of packages.
Simulates age-at-onset traits associated with a segregating major gene in family data obtained from population-based, clinic-based, or multi-stage designs. Appropriate ascertainment correction is utilized to estimate age-dependent penetrance functions either parametrically from the fitted model or nonparametrically from the data. The Expectation and Maximization algorithm can infer missing genotypes and carrier probabilities estimated from family's genotype and phenotype information or from a fitted model. Plot functions include pedigrees of simulated families and predicted penetrance curves based on specified parameter values. For more information see Choi, Y.-H., Briollais, L., He, W. and Kopciuk, K. (2021) FamEvent: An R Package for Generating and Modeling Time-to-Event Data in Family Designs, Journal of Statistical Software 97 (7), 1-30.
Shiny apps can often make use of the same key elements, this package provides modules for common tasks (data upload, wrangling data, figure generation and saving the app state), and also a framework for developing. These modules can react and interact as well as generate code to create reproducible analyses.
The goal of this package is to provide wrapper functions in the data cleaning and cleansing processes. These function helps in messages and interaction with the user, keep track of information in pipelines, help in the wrangling, munging, assessment and visualization of data frame-like material.
Does family-based gene by environment interaction tests, joint gene, gene-environment interaction test, and a test of a set of genes conditional on another set of genes.
This package provides an interface to the Kairos Face Recognition API <https://kairos.com/face-recognition-api>. The API detects faces in images and returns estimates for demographics like gender, ethnicity and age.
Play or simulate games of "Four in a Row" in the R console. This package is designed for educational purposes, encouraging users to write their own functions to play the game automatically. It contains a collection of built-in functions that play the game at various skill levels, for users to test their own functions against.
Supports fMRI (functional magnetic resonance imaging) analysis tasks including reading in CIFTI', GIFTI and NIFTI data, temporal filtering, nuisance regression, and aCompCor (anatomical Components Correction) (Muschelli et al. (2014) <doi:10.1016/j.neuroimage.2014.03.028>).
Fits a functional mediation model with a scalar distal outcome. The method is described in detail by Coffman, Dziak, Litson, Chakraborti, Piper & Li (2021) <arXiv:2112.03960>. The model is similar to that of Lindquist (2012) <doi:10.1080/01621459.2012.695640> although allowing a binary outcome as an alternative to a numerical outcome. The current version is a minor bug fix in the vignette. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
This package provides high-level access to neuroimaging data from standard software packages like FreeSurfer <http://freesurfer.net/> on the level of subjects and groups. Load morphometry data, surfaces and brain parcellations based on atlases. Mask data using labels, load data for specific atlas regions only, and visualize data and statistical results directly in R'.
Validate function arguments succinctly with informative error messages and optional automatic type casting and size recycling. Enable schema-based assertions by attaching reusable rules to data.frame and list objects for use throughout workflows.
This package provides functions for financial analysis and financial modeling, including batch graphs generation, beta calculation, descriptive statistics, annuity calculation, bond pricing and financial data download.
Turn numeric,data.frame,matrix into fraction form.
Brings a set of tools to help and automatically realise the description of principal component analyses (from FactoMineR functions). Detection of existing outliers, identification of the informative components, graphical views and dimensions description are performed threw dedicated functions. The Investigate() function performs all these functions in one, and returns the result as a report document (Word, PDF or HTML).
Analyze and model heteroskedastic behavior in financial time series.
Implementation of the FVIBES, the Fuzzy Variable-Importance Based Eigenspace Separation algorithm as described in the paper by Ghashti, J.S., Hare, W., and J.R.J. Thompson (2025). Variable-Weighted Adjacency Constructions for Fuzzy Spectral Clustering. Submitted.
This package provides functions to estimate a factor model using discrete and continuous proxy variables. The function dproxyme estimates a factor model of discrete proxy variables using an EM algorithm (Dempster, Laird, Rubin (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x>; Hu (2008) <doi:10.1016/j.jeconom.2007.12.001>; Hu(2017) <doi:10.1016/j.jeconom.2017.06.002> ). The function cproxyme estimates a linear factor model (Cunha, Heckman, and Schennach (2010) <doi:10.3982/ECTA6551>).
This package provides tools, helpers and data structures for developing models and time series functions for fable and extension packages. These tools support a consistent and tidy interface for time series modelling and analysis.
FLR algorithm for classification.
Allows the user to create a countdown in RMarkdown documents and shiny applications. The package is a wrapper of the JavaScript library flipdown.js'. See <https://pbutcher.uk/flipdown/> for more info.
An R API to MET Norway's Frost API <https://frost.met.no/index.html> to retrieve data as data frames. The Frost API, and the underlying data, is made available by the Norwegian Meteorological Institute (MET Norway). The data and products are distributed under the Norwegian License for Open Data 2.0 (NLOD) <https://data.norge.no/nlod/en/2.0> and Creative Commons 4.0 <https://creativecommons.org/licenses/by/4.0/>.
This package implements fast and exact computation of Gaussian stochastic process with the Matern kernel using forward filtering and backward smoothing algorithm. It includes efficient implementations of the inverse Kalman filter, with applications such as estimating particle interaction functions. These tools support models with or without noise. Additionally, the package offers algorithms for fast parameter estimation in latent factor models, where the factor loading matrix is orthogonal, and latent processes are modeled by Gaussian processes. See the references: 1) Mengyang Gu and Yanxun Xu (2020), Journal of Computational and Graphical Statistics; 2) Xinyi Fang and Mengyang Gu (2024), <doi:10.48550/arXiv.2407.10089>; 3) Mengyang Gu and Weining Shen (2020), Journal of Machine Learning Research; 4) Yizi Lin, Xubo Liu, Paul Segall and Mengyang Gu (2025), <doi:10.48550/arXiv.2501.01324>.