Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This tree-based method deals with high dimensional longitudinal data with correlated features through the use of a piecewise random effect model. FREE tree also exploits the network structure of the features, by first clustering them using Weighted Gene Co-expression Network Analysis ('WGCNA'). It then conducts a screening step within each cluster of features and a selecting step among the surviving features, which provides a relatively unbiased way to do feature selection. By using dominant principle components as regression variables at each leaf and the original features as splitting variables at splitting nodes, FREE tree delivers easily interpretable results while improving computational efficiency.
Flow of funds are financial accounts that are provided by Federal Reserve quarterly. The package contains all datasets <https://www.federalreserve.gov/datadownload/Choose.aspx?rel=z1>, tables <https://www.federalreserve.gov/apps/fof/FOFTables.aspx> and descriptions <https://www.federalreserve.gov/apps/fof/Guide/z1_tables_description.pdf> with functions to understand series <https://www.federalreserve.gov/apps/fof/SeriesStructure.aspx> and explore them.
Implementation of the FASSTER (Forecasting with Additive Switching of Seasonality, Trend, and Exogenous Regressors) model for forecasting time series with multiple seasonal patterns. The model combines state space methodology with a switching component in the observation equation to allow flexible modeling of complex seasonal patterns, including time-varying effects and multiple seasonalities.
Generates a frequency distribution. The frequency distribution includes raw frequencies, percentages in each category, and cumulative frequencies. The frequency distribution can be stored as a data frame.
This package provides a flexible set of tools for matching two un-linked data sets. fedmatch allows for three ways to match data: exact matches, fuzzy matches, and multi-variable matches. It also allows an easy combination of these three matches via the tier matching function.
Creation of an input model (fitted distribution) via the frequentist model averaging (FMA) approach and generate random-variates from the distribution specified by "myfit" which is the fitted input model via the FMA approach. See W. X. Jiang and B. L. Nelson (2018), "Better Input Modeling via Model Averaging," Proceedings of the 2018 Winter Simulation Conference, IEEE Press, 1575-1586.
This package provides a simple way to unload none-base packages and remove all global variables.
This package provides tools to study lineages, grandparenthood, loss of close relatives, kinship networks and other topics in multi-generation populations.
Enable researchers to adjust identification rates using the 1/(lineup size) method, generate the full receiver operating characteristic (ROC) curves, and statistically compare the area under the curves (AUC). References: Yueran Yang & Andrew Smith. (2020). "fullROC: An R package for generating and analyzing eyewitness-lineup ROC curves". <doi:10.13140/RG.2.2.20415.94885/1> , Andrew Smith, Yueran Yang, & Gary Wells. (2020). "Distinguishing between investigator discriminability and eyewitness discriminability: A method for creating full receiver operating characteristic curves of lineup identification performance". Perspectives on Psychological Science, 15(3), 589-607. <doi:10.1177/1745691620902426>.
This package provides tools for downloading and analyzing floristic quality assessment data. See Freyman et al. (2015) <doi:10.1111/2041-210X.12491> for more information about floristic quality assessment and the associated database.
Access data from the Federal Register API <https://www.federalregister.gov/developers/api/v1>.
On import, the XML information is converted to a dataframe that reflects the hierarchical XML structure. Intuitive functions allow to navigate within this transparent XML data structure (without any knowledge of XPath'). flatXML also provides tools to extract data from the XML into a flat dataframe that can be used to perform statistical operations. It also supports converting dataframes to XML.
This package provides a set of tools for data wrangling, spatial data analysis, statistical modeling (including direct, model-assisted, photo-based, and small area tools), and USDA Forest Service data base tools. These tools are aimed to help Foresters, Analysts, and Scientists extract and perform analyses on USDA Forest Service data.
Include assessing site classes based on the stand height growth and establishing a nonlinear mixed-effect biomass model under different site classes based on the whole stand model to achieve more accurate estimation of carbon sequestration. In particular, a carbon sequestration potential productivity calculation method based on the potential mean annual increment is proposed. This package is applicable to both natural forests and plantations. It can quantitatively assess standâ s potential productivity, realized productivity, and possible improvement under certain site, and can be used in many aspects such as site quality assessment, tree species suitability evaluation, and forest degradation evaluation. Reference: Lei X, Fu L, Li H, et al (2018) <doi:10.11707/j.1001-7488.20181213>. Fu L, Sharma R P, Zhu G, et al (2017) <doi:10.3390/f8040119>.
This package provides a tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.
Uses raw vectors to minimize memory consumption of categorical variables with fewer than 256 unique values. Useful for analysis of large datasets involving variables such as age, years, states, countries, or education levels.
Opens a shiny app which supports theoretical and computational analysis of block designs for symmetrical and mixed level factorial experiments. This package includes tools to check whether a design has orthogonal factorial structure (OFS) with balance or not and is able to find the orthogonality deviation value if not having OFS. This package includes function to evaluate efficiency factor of all factorial effects in two situations, in the first situation if the design is verified with OFS and balance then calculate the efficiencies of all factorial effects using a specific analytical procedure and in the second situation if the design is verified with non-OFS and balance then a new general method has been developed and used to calculate efficiencies under the condition that the design should be proper and equi-replicated, See Gupta, S.C. and Mukerjee, R. (1987): "A Calculus for factorial arrangements". Lecture Notes in Statistics. No. 59, Springer-Verlag, Berlin, New York, <doi:10.1007/978-1-4419-8730-3>. For the easy use of package, shiny app is used for giving inputs and inputs validation.
Implementation of dynamic principal component analysis (DPCA), simulation of VAR and VMA processes and frequency domain tools. These frequency domain methods for dimensionality reduction of multivariate time series were introduced by David Brillinger in his book Time Series (1974). We follow implementation guidelines as described in Hormann, Kidzinski and Hallin (2016), Dynamic Functional Principal Component <doi:10.1111/rssb.12076>.
This package provides a guarded resampling workflow for training and evaluating machine-learning models. When the guarded resampling path is used, preprocessing and model fitting are re-estimated within each resampling split to reduce leakage risk. Supports multiple resampling schemes, integrates with established engines in the tidymodels ecosystem, and aims to improve evaluation reliability by coordinating preprocessing, fitting, and evaluation within supported workflows. Offers a lightweight AutoML-style workflow by automating model training, resampling, and tuning across multiple algorithms, while keeping evaluation design explicit and user-controlled.
The main goal of this package is drawing the membership function of the fuzzy p-value which is defined as a fuzzy set on the unit interval for three following problems: (1) testing crisp hypotheses based on fuzzy data, (2) testing fuzzy hypotheses based on crisp data, and (3) testing fuzzy hypotheses based on fuzzy data. In all cases, the fuzziness of data or/and the fuzziness of the boundary of null fuzzy hypothesis transported via the p-value function and causes to produce the fuzzy p-value. If the p-value is fuzzy, it is more appropriate to consider a fuzzy significance level for the problem. Therefore, the comparison of the fuzzy p-value and the fuzzy significance level is evaluated by a fuzzy ranking method in this package.
Distribution functions and test for over-representation of short distances in the Liland distribution. Simulation functions are included for comparison.
Curry, Compose, and other higher-order functions.
Fit a fractional binomial regression model and extended zero-inflated negative binomial regression model to count data with excess zeros using maximum likelihood estimation. Compare zero-inflated regression models via Vuong closeness test.
This package provides implementation of statistical methods for random objects lying in various metric spaces, which are not necessarily linear spaces. The core of this package is Fréchet regression for random objects with Euclidean predictors, which allows one to perform regression analysis for non-Euclidean responses under some mild conditions. Examples include distributions in 2-Wasserstein space, covariance matrices endowed with power metric (with Frobenius metric as a special case), Cholesky and log-Cholesky metrics, spherical data. References: Petersen, A., & Müller, H.-G. (2019) <doi:10.1214/17-AOS1624>.