OOMPA offers R packages for gene expression and proteomics analysis. OOMPA uses S4 classes to construct object-oriented tools with a consistent user interface. All higher level analysis tools in OOMPA are compatible with the eSet classes defined in BioConductor. The lower level processing tools offer an alternative to parts of BioConductor, but can also be used to enhance existing BioConductor packages.
RawTherapee is a raw image processing suite. It comprises a subset of image editing operations specifically aimed at non-destructive raw photo post-production and is primarily focused on improving a photographer's workflow by facilitating the handling of large numbers of images. Most raw formats are supported, including Pentax Pixel Shift, Canon Dual-Pixel, and those from Foveon and X-Trans sensors.
This package is an extension to CellNOptR. It contains additional functionality needed to simulate and train a prior knowledge network to experimental data using constrained fuzzy logic (cFL, rather than Boolean logic as is the case in CellNOptR). Additionally, this package will contain functions to use for the compilation of multiple optimization results (either Boolean or cFL).
Box-Cox-type transformations for linear and logistic models with random effects using non-parametric profile maximum likelihood estimation, as introduced in Almohaimeed (2018) <http://etheses.dur.ac.uk/12831/> and Almohaimeed and Einbeck (2022) <doi:10.1177/1471082X20966919>. The main functions are optim.boxcox() for linear models with random effects and boxcoxtype() for logistic models with random effects.
Assists in the set-up of algorithms for Bayesian inference of vector autoregressive (VAR) and error correction (VEC) models. Functions for posterior simulation, forecasting, impulse response analysis and forecast error variance decomposition are largely based on the introductory texts of Chan, Koop, Poirier and Tobias (2019, ISBN: 9781108437493), Koop and Korobilis (2010) <doi:10.1561/0800000013> and Luetkepohl (2006, ISBN: 9783540262398).
Compute ranking and rating based on competition results. Methods of different nature are implemented: with fixed Head-to-Head structure, with variable Head-to-Head structure and with iterative nature. All algorithms are taken from the book Whoâ s #1?: The science of rating and ranking by Amy N. Langville and Carl D. Meyer (2012, ISBN:978-0-691-15422-0).
Computes discrete fast Fourier transform of river discharge data and the derived metrics. The methods are described in J. L. Sabo, D. M. Post (2008) <doi:10.1890/06-1340.1> and J. L. Sabo, A. Ruhi, G. W. Holtgrieve, V. Elliott, M. E. Arias, P. B. Ngor, T. A. Räsänsen, S. Nam (2017) <doi:10.1126/science.aao1053>.
Given a set of predictive quantiles from a distribution, estimate the distribution and create `d`, `p`, `q`, and `r` functions to evaluate its density function, distribution function, and quantile function, and generate random samples. On the interior of the provided quantiles, an interpolation method such as a monotonic cubic spline is used; the tails are approximated by a location-scale family.
Test hypotheses and construct confidence intervals for AUC (area under Receiver Operating Characteristic curve) and pAUC (partial area under ROC curve), from the given two samples of test data with disease/healthy subjects. The method used is based on TWO SAMPLE empirical likelihood and PROFILE empirical likelihood, as described in <https://www.ms.uky.edu/~mai/research/eAUC1.pdf>.
An interactive shiny'-based tool for exploration and quality assurance and quality control (QA/QC) of eddy covariance flux tower data processing. It generates data-point removal code via user-directed selection from a scatterplot, and can export a cleaned .csv with removed points set to NA plus an R script for reproducibility. Reference: Key (2025) <DOI:10.5281/zenodo.15597159>.
Estimation of the cutpoint defined by the Generalized Symmetry point in a binary classification setting based on a continuous diagnostic test or marker. Two methods have been implemented to construct confidence intervals for this optimal cutpoint, one based on the Generalized Pivotal Quantity and the other based on Empirical Likelihood. Numerical and graphical outputs for these two methods are easily obtained.
Simulating single cell RNA-seq data with complicated structure. This package is developed based on the Splat method (Zappia, Phipson and Oshlack (2017) <doi:10.1186/s13059-017-1305-0>). GeneScape incorporates additional features to simulate single cell RNA-seq data with complicated differential expression and correlation structures, such as sub-cell-types, correlated genes (pathway genes) and hub genes.
Estimation procedures and goodness-of-fit test for several Markov regime switching models and mixtures of bivariate copula models. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses Rosenblatt's transform and parametric bootstrap to estimate the p-value. The proposed methodologies are described in Nasri, Remillard and Thioub (2020) <doi:10.1002/cjs.11534>.
This package provides a unified interface for interacting with Large Language Models (LLMs) through various providers including OpenAI <https://platform.openai.com/docs/api-reference>, Ollama <https://ollama.com/>, and other OpenAI-compatible APIs. Features include automatic connection testing, max_tokens limit auto-adjustment, structured JSON responses with schema validation, interactive JSON schema generation, prompt templating, and comprehensive diagnostics.
This package provides a low-dependency implementation of GSIF::mpspline() <https://r-forge.r-project.org/scm/viewvc.php/pkg/R/mpspline.R?view=markup&revision=240&root=gsif>, which applies a mass-preserving spline to soil attributes. Splining soil data is a safe way to make continuous down-profile estimates of attributes measured over discrete, often discontinuous depth intervals.
This package provides a simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>.
Interface to the Nomis database (<https://www.nomisweb.co.uk>), maintained by Durham University on behalf of the Office for National Statistics (ONS). Provides access to UK labour market statistics including census data, benefit claimant counts, and employment surveys. Supports automatic pagination, optional disk caching, spatial data via sf', and tidy data output. Independent implementation unaffiliated with ONS or Durham University.
This package provides a derivative-based optimization framework that allows users to combine eight convergence criteria. Unlike standard optimization functions, this package includes a built-in mechanism to verify the positive definiteness of the Hessian matrix at the point of convergence. This additional check helps prevent the solver from falsely identifying non-optimal solutions, such as saddle points, as valid minima.
Prediction limits for the Poisson distribution are produced from both frequentist and Bayesian viewpoints. Limiting results are provided in a Bayesian setting with uniform, Jeffreys and gamma as prior distributions. More details on the methodology are discussed in Bejleri and Nandram (2018) <doi:10.1080/03610926.2017.1373814> and Bejleri, Sartore and Nandram (2021) <doi:10.1007/s42952-021-00157-x>.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
This package provides a user-friendly wrapper for web automation, using either chromote or selenium'. Provides a simple and consistent API to make web scraping and testing scripts easy to write and understand. Elements are lazy, and automatically wait for the website to be valid, resulting in reliable and reproducible code, with no visible impact on the experience of the programmer.
Work with containers over the Docker API. Rather than using system calls to interact with a docker client, using the API directly means that we can receive richer information from docker. The interface in the package is automatically generated using the OpenAPI (a.k.a., swagger') specification, and all return values are checked in order to make them type stable.
The goal of tidyplate is to help researchers convert different types of microplates into tibbles which can be used in data analysis. It accepts xlsx and csv files formatted in a specific way as input. It supports all types of standard microplate formats such as 6-well, 12-well, 24-well, 48-well, 96-well, 384-well, and, 1536-well plates.
This package provides functions for the Bayesian analysis of extreme value models. The rust package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution. The functionality of revdbayes is similar to the evdbayes package <https://cran.r-project.org/package=evdbayes>, which uses Markov Chain Monte Carlo ('MCMC') methods for posterior simulation. In addition, there are functions for making inferences about the extremal index, using the models for threshold inter-exceedance times of Suveges and Davison (2010) <doi:10.1214/09-AOAS292> and Holesovsky and Fusek (2020) <doi:10.1007/s10687-020-00374-3>. Also provided are d,p,q,r functions for the Generalised Extreme Value ('GEV') and Generalised Pareto ('GP') distributions that deal appropriately with cases where the shape parameter is very close to zero.