Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate gender from names in Spanish and Portuguese. Works with vectors and dataframes. The estimation works not only for first names but also full names. The package relies on a compilation of common names with it's most frequent associated gender in both languages which are used as look up tables for gender inference.
In gene-expression microarray studies, for example, one generally obtains a list of dozens or hundreds of genes that differ in expression between samples and then asks What does all of this mean biologically? Alternatively, gene lists can be derived conceptually in addition to experimentally. For instance, one might want to analyze a group of genes known as housekeeping genes. The work of the Gene Ontology (GO) Consortium <geneontology.org> provides a way to address that question. GO organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. The role of GoMiner is to automate the mapping between a list of genes and GO, and to provide a statistical summary of the results as well as a visualization.
Geographical detectors for measuring spatial stratified heterogeneity, as described in Jinfeng Wang (2010) <doi:10.1080/13658810802443457> and Jinfeng Wang (2016) <doi:10.1016/j.ecolind.2016.02.052>. Includes the optimal discretization of continuous data, four primary functions of geographical detectors, comparison of size effects of spatial unit and the visualizations of results. To use the package and to refer the descriptions of the package, methods and case datasets, please cite Yongze Song (2020) <doi:10.1080/15481603.2020.1760434>. The model has been applied in factor exploration of road performance and multi-scale spatial segmentation for network data, as described in Yongze Song (2018) <doi:10.3390/rs10111696> and Yongze Song (2020) <doi:10.1109/TITS.2020.3001193>, respectively.
This package provides an effective machine learning-based tool that quantifies the gain of passive device installation on wind turbine generators. H. Hwangbo, Y. Ding, and D. Cabezon (2019) <arXiv:1906.05776>.
This package provides complete detailed preprocessing of two-dimensional gas chromatogram (GCxGC) samples. Baseline correction, smoothing, peak detection, and peak alignment. Also provided are some analysis functions, such as finding extracted ion chromatograms, finding mass spectral data, targeted analysis, and nontargeted analysis with either the National Institute of Standards and Technology Mass Spectral Library or with the mass data. There are also several visualization methods provided for each step of the preprocessing and analysis.
GPU'/CPU Benchmarking on Debian-package based systems This package benchmarks performance of a few standard linear algebra operations (such as a matrix product and QR, SVD and LU decompositions) across a number of different BLAS libraries as well as a GPU implementation. To do so, it takes advantage of the ability to plug and play different BLAS implementations easily on a Debian and/or Ubuntu system. The current version supports - Reference BLAS ('refblas') which are un-accelerated as a baseline - Atlas which are tuned but typically configure single-threaded - Atlas39 which are tuned and configured for multi-threaded mode - Goto Blas which are accelerated and multi-threaded - Intel MKL which is a commercial accelerated and multithreaded version. As for GPU computing, we use the CRAN package - gputools For Goto Blas', the gotoblas2-helper script from the ISM in Tokyo can be used. For Intel MKL we use the Revolution R packages from Ubuntu 9.10.
This package provides a novel statistical model to detect the joint genetic and dynamic gene-environment (GxE) interaction with continuous traits in genetic association studies. It uses varying-coefficient models to account for different GxE trajectories, regardless whether the relationship is linear or not. The package includes one function, GxEtest(), to test a single genetic variant (e.g., a single nucleotide polymorphism or SNP), and another function, GxEscreen(), to test for a set of genetic variants. The method involves a likelihood ratio test described in Crainiceanu, C. M., and Ruppert, D. (2004) <doi:10.1111/j.1467-9868.2004.00438.x>.
Improved version of GRIN software that streamlines its use in practice to analyze genomic lesion data, accelerate its computing, and expand its analysis capabilities to answer additional scientific questions including a rigorous evaluation of the association of genomic lesions with RNA expression. Pounds, Stan, et al. (2013) <DOI:10.1093/bioinformatics/btt372>.
Generate multiple data sets for educational purposes to demonstrate the importance of multiple regression. The genset function generates a data set from an initial data set to have the same summary statistics (mean, median, and standard deviation) but opposing regression results.
Create hammock plots, parallel sets, and common angle plots with ggplot2'.
Simulation of, and fitting models for, Generalised Network Autoregressive (GNAR) time series models which take account of network structure, potentially with exogenous variables. Such models are described in Knight et al. (2020) <doi:10.18637/jss.v096.i05> and Nason and Wei (2021) <doi:10.1111/rssa.12875>. Diagnostic tools for GNAR(X) models can be found in Nason et al. (2023) <doi:10.48550/arXiv.2312.00530>.
Given an adjacency matrix drawn from a Generalized Stochastic Block Model with missing observations, this package robustly estimates the probabilities of connection between nodes and detects outliers nodes, as describes in Gaucher, Klopp and Robin (2019) <arXiv:1911.13122>.
Activate dark mode on your favorite ggplot2 theme with dark_mode() or use the dark versions of ggplot2 themes, including dark_theme_gray(), dark_theme_minimal(), and others. When a dark theme is applied, all geom color and geom fill defaults are changed to make them visible against a dark background. To restore the defaults to their original values, use invert_geom_defaults().
This package contains the Gene ontology terms and skeleton for the reduced GO directed acyclic graph (DAG) for the organisms Rat and Mouse. The methods are explicitly discussed in the following article : Manjang et al (2020) <doi:10.1038/s41598-020-73326-3>.
This package provides a framework and functions to create MOODLE quizzes. GIFTr takes dataframe of questions of four types: multiple choices, numerical, true or false and short answer questions, and exports a text file formatted in MOODLE GIFT format. You can prepare a spreadsheet in any software and import it into R to generate any number of questions with HTML', markdown and LaTeX support.
Visualise overlapping time series lines as a heatmap of line density. Provides a ggplot2 statistic implementing the DenseLines algorithm, which "normalizes time series by the arc length to compute accurate densities" (Moritz and Fisher, 2018) <doi:10.48550/arXiv.1808.06019>.
This package provides methods for estimating univariate long memory-seasonal/cyclical Gegenbauer time series processes. See for example (2022) <doi:10.1007/s00362-022-01290-3>. Refer to the vignette for details of fitting these processes.
Computation of Quantitative Trait Loci hits in the selected gene set. Performing gene set validation with Quantitative Trait Loci information. Performing gene set enrichment analysis with available Quantitative Trait Loci data and computation of statistical significance value from gene set analysis. Obtaining the list of Quantitative Trait Loci hit genes along with their overlapped Quantitative Trait Loci names.
Aligning multiple visualisations by utilising generalised orthogonal Procrustes analysis (GPA) before combining coordinates into a single biplot display as described in Nienkemper-Swanepoel, le Roux and Lubbe (2023)<doi:10.1080/03610918.2021.1914089>. This is mainly suitable to combine visualisations constructed from multiple imputations, however, it can be generalised to combine variations of visualisations from the same datasets (i.e. resamples).
This package provides a collection of datasets and simplified functions for an introductory (geo)statistics module at University College London. Provides functionality for compositional, directional and spatial data, including ternary diagrams, Wulff and Schmidt stereonets, and ordinary kriging interpolation. Implements logistic and (additive and centred) logratio transformations. Computes vector averages and concentration parameters for the von-Mises distribution. Includes a collection of natural and synthetic fractals, and a simulator for deterministic chaos using a magnetic pendulum example. The main purpose of these functions is pedagogical. Researchers can find more complete alternatives for these tools in other packages such as compositions', robCompositions', sp', gstat and RFOC'. All the functions are written in plain R, with no compiled code and a minimal number of dependencies. Theoretical background and worked examples are available at <https://tinyurl.com/UCLgeostats/>.
The Geocoordinate Validation Service (GVS) runs checks of coordinates in latitude/longitude format. It returns annotated coordinates with additional flags and metadata that can be used in data cleaning. Additionally, the package has functions related to attribution and metadata information. More information can be found at <https://github.com/ojalaquellueva/gvs/tree/master/api>.
This package provides a statistical hypothesis test for conditional independence. Given residuals from a sufficiently powerful regression, it tests whether the covariance of the residuals is vanishing. It can be applied to both discretely-observed functional data and multivariate data. Details of the method can be found in Anton Rask Lundborg, Rajen D. Shah and Jonas Peters (2022) <doi:10.1111/rssb.12544>.
This package provides a collection of methods to determine growth rates from experimental data, in particular from batch experiments and plate reader trials.
This package makes available 50 objective functions for benchmarking the performance of global optimization algorithms.