Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
BASIX provides some efficient C/C++ implementations of native R procedures to speed up calculations in R.
This package provides a cross between a 2D density plot and a scatter plot, implemented as a ggplot2 geom. Points in the scatter plot are colored by the number of neighboring points. This is useful to visualize the 2D-distribution of points in case of overplotting.
This package lets you fit generalized linear mixed models for a single grouping factor under maximum likelihood approximating the integrals over the random effects with an adaptive Gaussian quadrature rule; Jose C. Pinheiro and Douglas M. Bates (1995) <doi:10.1080/10618600.1995.10474663>.
This package provides a set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a log or a logit transformation, respectively.
This package provides a comprehensive collection of functions for conducting meta-analyses in R. The package includes functions to calculate various effect sizes or outcome measures, fit fixed-, random-, and mixed-effects models to such data, carry out moderator and meta-regression analyses, and create various types of meta-analytical plots (e.g., forest, funnel, radial, L'Abbe, Baujat, GOSH plots). For meta-analyses of binomial and person-time data, the package also provides functions that implement specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear (mixed-effects) models (i.e. mixed-effects logistic and Poisson regression models). Finally, the package provides functionality for fitting meta-analytic multivariate/multilevel models that account for non-independent sampling errors and/or true effects (e.g. due to the inclusion of multiple treatment studies, multiple endpoints, or other forms of clustering). Network meta-analyses and meta-analyses accounting for known correlation structures (e.g. due to phylogenetic relatedness) can also be conducted.
This package allows users to create CSS grid and flexbox layouts for R/Shiny without needing to write custom CSS.
This package is a port of the new matplotlib color maps (viridis, magma, plasma and inferno) to R. matplotlib is a popular plotting library for Python. These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform, both in regular form and also when converted to black-and-white. They are also designed to be perceived by readers with the most common form of color blindness. This is the lite version of the more complete viridis package.
This package provides a variety of descriptive multivariate analyses with the singular value decomposition, such as principal components analysis, correspondence analysis, and multidimensional scaling. See An ExPosition of the Singular Value Decomposition in R (Beaton et al 2014) <doi:10.1016/j.csda.2013.11.006>.
This package provides a modern module system for R. Organize code into hierarchical, composable, reusable modules, and use it effortlessly across projects via a flexible, declarative dependency loading syntax.
This package offers quick statistical hypothesis testing for matrix rows/columns. The main goals are speed through vectorization, detailed and user-friendly output, and compatibility with tests implemented in R.
Alternating least squares is often used to resolve components contributing to data with a bilinear structure; the basic technique may be extended to alternating constrained least squares. This package provides an implementation of multivariate curve resolution alternating least squares (MCR-ALS).
Commonly applied constraints include unimodality, non-negativity, and normalization of components. Several data matrices may be decomposed simultaneously by assuming that one of the two matrices in the bilinear decomposition is shared between datasets.
This package provides software for the book Spectral Analysis for Physical Applications, Donald B. Percival and Andrew T. Walden, Cambridge University Press, 1993.
This package provides an interface to Amazon Web Services database services, including Relational Database Service (RDS), DynamoDB NoSQL database, and more.
ActiLife generates activity counts from data collected by Actigraph accelerometers. Actigraph is one of the most common research-grade accelerometers. There is considerable research validating and developing algorithms for human activity using ActiLife counts. Unfortunately, ActiLife counts are proprietary and difficult to implement if researchers use different accelerometer brands. The code creates ActiLife counts from raw acceleration data for different accelerometer brands.
This package provides tools to convert the output of utils::getParseData() to an XML tree, that one can search via XPath, and is easier to manipulate in general.
The wordspace package turns R into an interactive laboratory for empirical research on distributional semantic models (DSM). It consists of a small set of carefully designed functions, most of which
encapsulate non-trivial R operations in a user-friendly manner or
provide efficient and memory-lean C implementations of key operations.
This is a package for operations on triangular meshes based on VCGLIB. This package integrates nicely with the R-package rgl to render the meshes processed by Rvcg. The Visualization and Computer Graphics Library (VCG for short) is a library for manipulation, processing and displaying with OpenGL of triangle and tetrahedral meshes.
This package provides R implementations of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models.
This package provides tools to calculate exact and approximate theory experimental designs for D, A, and I criteria. Very large designs may be created. Experimental designs may be blocked or blocked designs created from a candidate list, using several criteria. The blocking can be done when whole and within plot factors interact.
This package provides helper functions to install and maintain the LaTeX distribution named TinyTeX, a lightweight, cross-platform, portable, and easy-to-maintain version of TeX Live. This package also contains helper functions to compile LaTeX documents, and install missing LaTeX packages automatically.
This package offers a set of functions for extending dendrogram objects in R, letting you visualize and compare trees of hierarchical clusterings. You can adjust a tree's graphical parameters (the color, size, type, etc of its branches, nodes and labels) and visually and statistically compare different dendrograms to one another.
This package is a feature selection package of the mlr3 ecosystem. It selects the optimal feature set for any mlr3 learner. The package works with several optimization algorithms e.g. random search, Recursive feature elimination, and genetic search. Moreover, it can automatically optimize learners and estimate the performance of optimized feature sets with nested resampling.
This package provides a drop-in replacement for rasterize from the raster package that takes sf-type objects, and is much faster. There is support for the main options provided by the rasterize function, including setting the field used and background value, and options for aggregating multi-layer rasters.
This package provides a collection of meta-analysis datasets for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses.