Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We present an implementation of the algorithms required to simulate large-scale social networks and retrieve their most relevant metrics. Details can be found in the accompanying scientific paper on the Journal of Statistical Software, <doi:10.18637/jss.v096.i07>.
Process automation of point cloud data derived from terrestrial-based technologies such as Terrestrial Laser Scanner (TLS) or Mobile Laser Scanner. FORTLS enables (i) detection of trees and estimation of tree-level attributes (e.g. diameters and heights), (ii) estimation of stand-level variables (e.g. density, basal area, mean and dominant height), (iii) computation of metrics related to important forest attributes estimated in Forest Inventories at stand-level, and (iv) optimization of plot design for combining TLS data and field measured data. Documentation about FORTLS is described in Molina-Valero et al. (2022, <doi:10.1016/j.envsoft.2022.105337>).
Data sets and utilities to accompany the second edition of "Foundations and Applications of Statistics: an Introduction using R" (R Pruim, published by AMS, 2017), a text covering topics from probability and mathematical statistics at an advanced undergraduate level. R is integrated throughout, and access to all the R code in the book is provided via the snippet() function.
This package provides allele frequency data for Short Tandem Repeat human genetic markers commonly used in forensic genetics for human identification and kinship analysis. Includes published population frequency data from the US National Institute of Standards and Technology, Federal Bureau of Investigation and the UK government.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to install and load the entire package-collection with a single R command, and provides convenient ways to find relevant documentation. Most commonly, you should not worry about the individual packages that make up the package-collection as you can access all features via this package. To learn more about ForestGEO visit <http://www.forestgeo.si.edu/>.
This package contains Probability Mass Functions, Cumulative Mass Functions, Negative Log Likelihood value, parameter estimation and modeling data using Binomial Mixture Distributions (BMD) (Manoj et al (2013) <doi:10.5539/ijsp.v2n2p24>) and Alternate Binomial Distributions (ABD) (Paul (1985) <doi:10.1080/03610928508828990>), also Journal article to use the package(<doi:10.21105/joss.01505>).
This package provides functions for analysing and modelling extreme events in financial time Series. The topics include: (i) data pre-processing, (ii) explorative data analysis, (iii) peak over threshold modelling, (iv) block maxima modelling, (v) estimation of VaR and CVaR, and (vi) the computation of the extreme index.
This package provides functions for range estimation in birds based on Pennycuick (2008) and Pennycuick (1975), Flight program which compliments Pennycuick (2008) requires manual entry of birds which can be tedious when there are hundreds of birds to estimate. Implemented are two ODE methods discussed in Pennycuick (1975) and time-marching computation methods as in Pennycuick (1998) and Pennycuick (2008). See Pennycuick (1975, ISBN:978-0-12-249405-5), Pennycuick (1998) <doi:10.1006/jtbi.1997.0572>, and Pennycuick (2008, ISBN:9780080557816).
Routines for model-based functional cluster analysis for functional data with optional covariates. The idea is to cluster functional subjects (often called functional objects) into homogenous groups by using spline smoothers (for functional data) together with scalar covariates. The spline coefficients and the covariates are modelled as a multivariate Gaussian mixture model, where the number of mixtures corresponds to the number of clusters. The parameters of the model are estimated by maximizing the observed mixture likelihood via an EM algorithm (Arnqvist and Sjöstedt de Luna, 2019) <doi:10.48550/arXiv.1904.10265>. The clustering method is used to analyze annual lake sediment from lake Kassjön (Northern Sweden) which cover more than 6400 years and can be seen as historical records of weather and climate.
Nonparametric estimators and tests for time series analysis. The functions use bootstrap techniques and robust nonparametric difference-based estimators to test for the presence of possibly non-monotonic trends and for synchronicity of trends in multiple time series.
Construction, calculation and display of fault trees. Methods derived from Clifton A. Ericson II (2005, ISBN: 9780471739425) <DOI:10.1002/0471739421>, Antoine Rauzy (1993) <DOI:10.1016/0951-8320(93)90060-C>, Tim Bedford and Roger Cooke (2012, ISBN: 9780511813597) <DOI:10.1017/CBO9780511813597>, Nikolaos Limnios, (2007, ISBN: 9780470612484) <DOI: 10.1002/9780470612484>.
Links datasets through fuzzy string matching using pretrained text embeddings. Produces more accurate record linkage when lexical string distance metrics are a poor guide to match quality (e.g., "Patricia" is more lexically similar to "Patrick" than it is to "Trish"). Capable of performing multilingual record linkage. Methods are described in Ornstein (2025) <doi:10.1017/pan.2025.10016>.
Create an interactive function map by analyzing a specified R script. It uses the find_dependencies() function from the functiondepends package to recursively trace all user-defined function dependencies.
Calculation of Evapotranspiration by FAO Penman-Monteith equation based on Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998, ISBN:92-5-104219-5) "Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56".
Finds CRAN packages by the topic requested. The topic can be given as a character string or as a regular expression and will help users to locate CRAN packages matching their specified requirement. findPackage(<string>) returns a data frame of packages with description containing the input string.
This package provides a collection of commonly used univariate and multivariate time series forecasting models including automatically selected exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models. These models work within the fable framework provided by the fabletools package, which provides the tools to evaluate, visualise, and combine models in a workflow consistent with the tidyverse.
This package creates a scatter plot after residualizing using a set of covariates. The residuals are calculated using the fixest package which allows very fast estimation that scales. Details of the (Yule-)Frisch-Waugh-Lovell theorem is given in Basu (2023) <doi:10.48550/arXiv.2307.00369>.
Calculates marginal effects based on logistic model objects such as glm or speedglm at the average (default) or at given values using finite differences. It also returns confidence intervals for said marginal effects and the p-values, which can easily be used as input in stargazer. The function only returns the essentials and is therefore much faster but not as detailed as other functions available to calculate marginal effects. As a result, it is highly suitable for large datasets for which other packages may require too much time or calculating power.
High-order functions for data manipulation : sort or group data, given one or more auxiliary functions. Functions are inspired by other pure functional programming languages ('Haskell mainly). The package also provides built-in function operators for creating compact anonymous functions, as well as the possibility to use the purrr package syntax.
This package provides methods and tools designed to improve the forecast accuracy for a linearly constrained multiple time series, while fulfilling the linear/aggregation relationships linking the components (Girolimetto and Di Fonzo, 2024 <doi:10.48550/arXiv.2412.03429>). FoCo2 offers multi-task forecast combination and reconciliation approaches leveraging input from multiple forecasting models or experts and ensuring that the resulting forecasts satisfy specified linear constraints. In addition, linear inequality constraints (e.g., non-negativity of the forecasts) can be imposed, if needed.
Processes data from The Social Networks and Fertility Survey, downloaded from <https://dataarchive.lissdata.nl>, including correcting respondent errors and transforming network data into network objects to facilitate analyses and visualisation.
The Flow Analysis Summary Statistics Tool for R, fasstr', provides various functions to tidy and screen daily stream discharge data, calculate and visualize various summary statistics and metrics, and compute annual trending and volume frequency analyses. It features useful function arguments for filtering of and handling dates, customizing data and metrics, and the ability to pull daily data directly from the Water Survey of Canada hydrometric database (<https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/>).
Compute inbreeding coefficients using the method of Meuwissen and Luo (1992) <doi:10.1186/1297-9686-24-4-305>, and numerator relationship coefficients between individuals using the method of Van Vleck (2007) <https://pubmed.ncbi.nlm.nih.gov/18050089/>.
This package provides interface to the MATLAB toolbox Flexible Statistical Data Analysis (FSDA) which is comprehensive and computationally efficient software package for robust statistics in regression, multivariate and categorical data analysis. The current R version implements tools for regression: (forward search, S- and MM-estimation, least trimmed squares (LTS) and least median of squares (LMS)), for multivariate analysis (forward search, S- and MM-estimation), for cluster analysis and cluster-wise regression. The distinctive feature of our package is the possibility of monitoring the statistics of interest as a function of breakdown point, efficiency or subset size, depending on the estimator. This is accompanied by a rich set of graphical features, such as dynamic brushing, linking, particularly useful for exploratory data analysis.