Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Network meta-analyses (mixed treatment comparisons) in the Bayesian framework using JAGS. Includes methods to assess heterogeneity and inconsistency, and a number of standard visualizations. van Valkenhoef et al. (2012) <doi:10.1002/jrsm.1054>; van Valkenhoef et al. (2015) <doi:10.1002/jrsm.1167>.
This package provides flexible tools for the visualization of genomic data. Supports interactive and static plots tailored for presentations and publications, with customizable features like colors, themes, and annotations to align with specific analytical and presentation goals.
Create stunning network experiences powered by the G6 graph visualisation engine JavaScript library <https://g6.antv.antgroup.com/en>. In shiny mode, modify your graph directly from the server function to dynamically interact with nodes and edges. Select your favorite layout among 20 choices. 15 behaviors are available such as interactive edge creation, collapse-expand and brush select. 17 plugins designed to improve the user experience such as a mini-map, toolbars and grid lines. Customise the look and feel of your graph with comprehensive options for nodes, edges and more.
Generalization of supervised principal component regression (SPCR; Bair et al., 2006, <doi:10.1198/016214505000000628>) to support continuous, binary, and discrete variables as outcomes and predictors (inspired by the superpc R package <https://cran.r-project.org/package=superpc>).
Defines classes and methods that can be used to implement genetic algorithms for feature selection. The idea is that we want to select a fixed number of features to combine into a linear classifier that can predict a binary outcome, and can use a genetic algorithm heuristically to select an optimal set of features.
Generalized promotion time cure model (GPTCM) via Bayesian hierarchical modeling for multiscale data integration (Zhao et al. (2025) <doi:10.48550/arXiv.2509.01001>). The Bayesian GPTCMs are applicable for both low- and high-dimensional data.
The goal of gsDesign2 is to enable fixed or group sequential design under non-proportional hazards. To enable highly flexible enrollment, time-to-event and time-to-dropout assumptions, gsDesign2 offers piecewise constant enrollment, failure rates, and dropout rates for a stratified population. This package includes three methods for designs: average hazard ratio, weighted logrank tests in Yung and Liu (2019) <doi:10.1111/biom.13196>, and MaxCombo tests. Substantial flexibility on top of what is in the gsDesign package is intended for selecting boundaries.
Maximum likelihood estimation, random values generation, density computation and other functions for the exponential-Poisson generalised exponential-Poisson and Poisson-exponential distributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). "Poisson-exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128--144. <doi:10.1080/02664763.2016.1268571>. Louzada F., Ramos, P. L. and Ferreira, H. P. (2020). "Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence". Communications in Statistics--Simulation and Computation, 49(4): 1024--1043. <doi:10.1080/03610918.2018.1491988>. Barreto-Souza W. and Cribari-Neto F. (2009). "A generalization of the exponential-Poisson distribution". Statistics and Probability Letters, 79(24): 2493--2500. <doi:10.1016/j.spl.2009.09.003>.
This package provides ggplot2 functions to return the results of seasonal and trading day adjustment made by RJDemetra'. RJDemetra is an R interface around JDemetra+ (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System and the European System of Central Banks.
This package provides functions to help with creating sparklines in the style of Edward Tufte <https://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1> in ggplot2'. It computes ribbon geoms with the interquartile ranges and points and/or labels at the beginning, end, max, and min points.
Use the graph-constrained estimation (Grace) procedure (Zhao and Shojaie, 2016 <doi:10.1111/biom.12418>) to estimate graph-guided linear regression coefficients and use the Grace/GraceI/GraceR tests to perform graph-guided hypothesis tests on the association between the response and the predictors.
An extension of ggplot2 to provide quiver plots to visualise vector fields. This functionality is implemented using a geom to produce a new graphical layer, which allows aesthetic options. This layer can be overlaid on a map to improve visualisation of mapped data.
Evaluate and validate the Geboes score for histological assessment of inflammation in ulcerative colitis. The original Geboes score from Geboes, et al. (2000) <doi:10.1136/gut.47.3.404>, binary version from Li, et al. (2019) <doi:10.1093/ecco-jcc/jjz022>, and continuous version from Magro, et al. (2020) <doi:10.1093/ecco-jcc/jjz123> are all described and implemented.
This package provides a Chernoff face geom for ggplot2'. Maps multivariate data to human-like faces. Inspired by Chernoff (1973) <doi:10.1080/01621459.1973.10482434>.
This package performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions. These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.
An easy way to create responsive layouts with just a few lines of code. You can create boxes that are draggable and resizable and load predefined Layouts. The package serves as a wrapper to allow for easy integration of the gridstack.js functionalities <https://github.com/gridstack/gridstack.js>.
Simulate, estimate and forecast using univariate and multivariate GAS models as described in Ardia et al. (2019) <doi:10.18637/jss.v088.i06>.
Fits gastric emptying time series from MRI or scintigraphic measurements using nonlinear mixed-model population fits with nlme and Bayesian methods with Stan; computes derived parameters such as t50 and AUC.
Make efficient Rust implementations of graph adjustment identification distances available in R. These distances (based on ancestor, optimal, and parent adjustment) count how often the respective adjustment identification strategy leads to causal inferences that are incorrect relative to a ground-truth graph when applied to a candidate graph instead. See also Henckel, Würtzen, Weichwald (2024) <doi:10.48550/arXiv.2402.08616>.
An interactive mapping tool for geographically weighted correlation and partial correlation. Geographically weighted partial correlation coefficients are calculated following (Percival and Tsutsumida, 2017)<doi:10.1553/giscience2017_01_s36> and are described in greater detail in (Tsutsumida et al., 2019)<doi:10.5194/ica-abs-1-372-2019> and (Percival et al., 2021)<arXiv:2101.03491>.
This package provides a model building procedure to build parsimonious geoadditive model from a large number of covariates. Continuous, binary and ordered categorical responses are supported. The model building is based on component wise gradient boosting with linear effects, smoothing splines and a smooth spatial surface to model spatial autocorrelation. The resulting covariate set after gradient boosting is further reduced through backward elimination and aggregation of factor levels. The package provides a model based bootstrap method to simulate prediction intervals for point predictions. A test data set of a soil mapping case study in Berne (Switzerland) is provided. Nussbaum, M., Walthert, L., Fraefel, M., Greiner, L., and Papritz, A. (2017) <doi:10.5194/soil-3-191-2017>.
Discrete scales for the colorblind-friendly Okabe-Ito palette, including color', fill', and edge_colour'. ggokabeito provides ggplot2 and ggraph scales to easily use the Okabe-Ito palette in your data visualizations.
Corset plots are a visualization technique used strictly to visualize repeat measures at 2 time points (such as pre- and post- data). The distribution of measurements are visualized at each time point, whilst the trajectories of individual change are visualized by connecting the pre- and post- values linearly. These lines can be coloured to represent the magnitude of change, or other user-defined value. This method of visualization is ideal for showing the heterogeneity of data, including differences by sub-groups. The package relies on ggplot2 allowing for easy integration so that users can customize their visualizations as required. Users can create corset plots using data in either wide or long format using the functions gg_corset() or gg_corset_elongated(), respectively.
R provides fantastic tools for changepoint analysis, but plots generated by the tools do not have the ggplot2 style. This tool, however, combines changepoint', changepoint.np and ecp together, and uses ggplot2 to visualize changepoints.