Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
S4 classes and methods to deal with fuzzy numbers. They allow for computing any arithmetic operations (e.g., by using the Zadeh extension principle), performing approximation of arbitrary fuzzy numbers by trapezoidal and piecewise linear ones, preparing plots for publications, computing possibility and necessity values for comparisons, etc.
This package provides a model-independent factor importance ranking and selection procedure based on total Sobol indices. Please see Huang and Joseph (2025) <doi:10.1080/00401706.2025.2483531>. This research is supported by U.S. National Science Foundation grants DMS-2310637 and DMREF-1921873.
This package provides functions for the calculation of greenhouse gas flux rates from closed chamber concentration measurements. The package follows a modular concept: Fluxes can be calculated in just two simple steps or in several steps if more control in details is wanted. Additionally plot and preparation functions as well as functions for modelling gpp and reco are provided.
TrainFastImputation() uses training data to describe a multivariate normal distribution that the data approximates or can be transformed into approximating and stores this information as an object of class FastImputationPatterns'. FastImputation() function uses this FastImputationPatterns object to impute (make a good guess at) missing data in a single line or a whole data frame of data. This approximates the process used by Amelia <https://gking.harvard.edu/amelia> but is much faster when filling in values for a single line of data.
An R API to MET Norway's Frost API <https://frost.met.no/index.html> to retrieve data as data frames. The Frost API, and the underlying data, is made available by the Norwegian Meteorological Institute (MET Norway). The data and products are distributed under the Norwegian License for Open Data 2.0 (NLOD) <https://data.norge.no/nlod/en/2.0> and Creative Commons 4.0 <https://creativecommons.org/licenses/by/4.0/>.
This package contains functions for operations with fuzzy cognitive maps using t-norm and s-norm operators. T-norms and S-norms are described by Dov M. Gabbay and George Metcalfe (2007) <doi:10.1007/s00153-007-0047-1>. System indicators are described by Cox, Earl D. (1995) <isbn:1886801010>. Executable examples are provided in the "inst/examples" folder.
This package provides a toolkit for Flux Balance Analysis and related metabolic modeling techniques. Functions are provided for: parsing models in tabular format, converting parsed metabolic models to input formats for common linear programming solvers, and evaluating and applying gene-protein-reaction mappings. In addition, there are wrappers to parse a model, select a solver, find the metabolic fluxes, and return the results applied to the original model. Compared to other packages in this field, this package puts a much heavier focus on providing reusable components that can be used in the design of new implementation of new techniques, in particular those that involve large parameter sweeps. For a background on the theory, see What is Flux Balance Analysis <doi:10.1038/nbt.1614>.
Easily analyze relational data from the United States 2016 federal election cycle as reported by the Federal Election Commission. This package contains data about candidates, committees, and a variety of different financial expenditures. Data is from <https://www.fec.gov/data/browse-data/?tab=bulk-data>.
When fitting a set of linear regressions which have some same variables, we can separate the matrix and reduce the computation cost. This package aims to fit a set of repeated linear regressions faster. More details can be found in this blog Lijun Wang (2017) <https://stats.hohoweiya.xyz/regression/2017/09/26/An-R-Package-Fit-Repeated-Linear-Regressions/>.
Process raw force-plate data (txt-files) by segmenting them into trials and, if needed, calculating (user-defined) descriptive statistics of variables for user-defined time bins (relative to trigger onsets) for each trial. When segmenting the data a baseline correction, a filter, and a data imputation can be applied if needed. Experimental data can also be processed and combined with the segmented force-plate data. This procedure is suggested by Johannsen et al. (2023) <doi:10.6084/m9.figshare.22190155> and some of the options (e.g., choice of low-pass filter) are also suggested by Winter (2009) <doi:10.1002/9780470549148>.
Computes the functional tangential angle pseudo-depth and its robustified version from the paper by Kuhnt and Rehage (2016). See Kuhnt, S.; Rehage, A. (2016): An angle-based multivariate functional pseudo-depth for shape outlier detection, JMVA 146, 325-340, <doi:10.1016/j.jmva.2015.10.016> for details.
For ordinal rating data, consider the accelerated EM algorithm to estimate and test models within the family of CUB models (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions). The procedure is built upon Louis identity for the observed information matrix. Best-subset variable selection is then implemented since it becomes more feasible from the computational point of view.
Compute energy fluxes in trophic networks, from resources to their consumers, and can be applied to systems ranging from simple two-species interactions to highly complex food webs. It implements the approach described in Gauzens et al. (2017) <doi:10.1101/229450> to calculate energy fluxes, which are also used to calculate equilibrium stability.
Implementation of the FVIBES, the Fuzzy Variable-Importance Based Eigenspace Separation algorithm as described in the paper by Ghashti, J.S., Hare, W., and J.R.J. Thompson (2025). Variable-Weighted Adjacency Constructions for Fuzzy Spectral Clustering. Submitted.
This package provides a tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.
This package provides a set of functions that facilitate basic data manipulation and cleaning for statistical analysis including functions for finding and fixing duplicate rows and columns, missing values, outliers, and special characters in column and row names and functions for checking data consistency, distribution, quality, reliability, and structure.
Create datasets with factorial structure through simulation by specifying variable parameters. Extended documentation at <https://scienceverse.github.io/faux/>. Described in DeBruine (2020) <doi:10.5281/zenodo.2669586>.
Markov chain Monte Carlo (MCMC) sampler for fully Bayesian estimation of latent factor stochastic volatility models with interweaving <doi:10.1080/10618600.2017.1322091>. Sparsity can be achieved through the usage of Normal-Gamma priors on the factor loading matrix <doi:10.1016/j.jeconom.2018.11.007>.
This package provides a set of analytical tools useful in analysing ecological and geographical data sets, both ancient and modern. The package includes functions for estimating species richness (Chao 1 and 2, ACE, ICE, Jacknife), shared species/beta diversity, species area curves and geographic distances and areas.
The free algebra in R with non-commuting indeterminates. Uses disordR discipline (Hankin, 2022, <doi:10.48550/ARXIV.2210.03856>). To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2211.04002>.
Log-ratio Lasso regression for continuous, binary, and survival outcomes with (longitudinal) compositional features. See Fei and others (2024) <doi:10.1016/j.crmeth.2024.100899>.
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>).
This package implements the AdaptiveImpute matrix completion algorithm of Intelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion <doi:10.1080/10618600.2018.1518238> as well as the specialized variant of Co-Factor Analysis of Citation Networks <doi:10.1080/10618600.2024.2394464>. AdaptiveImpute is useful for embedding sparsely observed matrices, often out performs competing matrix completion algorithms, and self-tunes its hyperparameter, making usage easy.
This package implements a path algorithm for the Fused Lasso Signal Approximator. For more details see the help files or the article by Hoefling (2009) <arXiv:0910.0526>.