Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Quickly make tables of descriptive statistics (i.e., counts, percentages, confidence intervals) for categorical variables. This package is designed to work in a Tidyverse pipeline, and consideration has been given to get results from R to Microsoft Word ® with minimal pain.
This package provides a mutual information estimator based on k-nearest neighbor method proposed by A. Kraskov, et al. (2004) <doi:10.1103/PhysRevE.69.066138> to measure general dependence and the time complexity for our estimator is only squared to the sample size, which is faster than other statistics. Besides, an implementation of mutual information based independence test is provided for analyzing multivariate data in Euclidean space (T B. Berrett, et al. (2019) <doi:10.1093/biomet/asz024>); furthermore, we extend it to tackle datasets in metric spaces.
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" (2nd ed, 2018) by Rob J Hyndman and George Athanasopoulos <https://otexts.com/fpp2/>. All packages required to run the examples are also loaded.
This is a fast and flexible implementation of the Kalman filter and smoother, which can deal with NAs. It is entirely written in C and relies fully on linear algebra subroutines contained in BLAS and LAPACK. Due to the speed of the filter, the fitting of high-dimensional linear state space models to large datasets becomes possible. This package also contains a plot function for the visualization of the state vector and graphical diagnostics of the residuals.
This package provides a shiny application based on FossilSim'. Used for simulating tree, taxonomic and fossil data under mechanistic models of speciation, preservation and sampling.
This package implements a fast, flexible method for simulating continuous variables with specified rank correlations using the Imanâ Conover transformation (Iman & Conover, 1982 <doi:10.1080/03610918208812265>) and back-ranking. Includes plotting tools and error-diagnostics.
This package provides a set of functions that facilitate basic data manipulation and cleaning for statistical analysis including functions for finding and fixing duplicate rows and columns, missing values, outliers, and special characters in column and row names and functions for checking data consistency, distribution, quality, reliability, and structure.
Defines a collection of functions to compute average power and sample size for studies that use the false discovery rate as the final measure of statistical significance. A three-rectangle approximation method of a p-value histogram is proposed to derive a formula to compute the statistical power for analyses that involve the FDR. The methodology paper of this package is under review.
This package provides a comprehensive Shiny-based graphical user interface for conducting a wide range of factor analysis procedures. FAfA (Factor Analysis for All) guides users through data uploading, assumption checking (descriptives, collinearity, multivariate normality, outliers), data wrangling (variable exclusion, data splitting), factor retention analysis (e.g., Parallel Analysis, Hull method, EGA), Exploratory Factor Analysis (EFA) with various rotation and extraction methods, Confirmatory Factor Analysis (CFA) for model testing, Reliability Analysis (e.g., Cronbach's Alpha, McDonald's Omega), Measurement Invariance testing across groups, and item weighting techniques. The application leverages established R packages such as lavaan and psych to perform these analyses, offering an accessible platform for researchers and students. Results are presented in user-friendly tables and plots, with options for downloading outputs.
Statistical tool set for population genetics. The package provides following functions: 1) estimators of genetic differentiation (FST), 2) regression analysis of environmental effects on genetic differentiation using generalized least squares (GLS) method, 3) interfaces to read and manipulate GENEPOP format data files). For more information, see Kitada, Nakamichi and Kishino (2020) <doi:10.1101/2020.01.30.927186>.
Automated time series forecasting developed by Microsoft Finance. The Microsoft Finance Time Series Forecasting Framework, aka Finn, can be used to forecast any component of the income statement, balance sheet, or any other area of interest by finance. Any numerical quantity over time, Finn can be used to forecast it. While it can be applied outside of the finance domain, Finn was built to meet the needs of financial analysts to better forecast their businesses within a company, and has a lot of built in features that are specific to the needs of financial forecasters. Happy forecasting!
Utilities to read and write files in the FITS (Flexible Image Transport System) format, a standard format in astronomy (see e.g. <https://en.wikipedia.org/wiki/FITS> for more information). Present low-level routines allow: reading, parsing, and modifying FITS headers; reading FITS images (multi-dimensional arrays); reading FITS binary and ASCII tables; and writing FITS images (multi-dimensional arrays). Higher-level functions allow: reading files composed of one or more headers and a single (perhaps multidimensional) image or single table; reading tables into data frames; generating vectors for image array axes; scaling and writing images as 16-bit integers. Known incompletenesses are reading random group extensions, as well as complex and array descriptor data types in binary tables.
Log-ratio Lasso regression for continuous, binary, and survival outcomes with (longitudinal) compositional features. See Fei and others (2024) <doi:10.1016/j.crmeth.2024.100899>.
Allows ATA (Automatic Time series analysis using the Ata method) models from the ATAforecasting package to be used in a tidy workflow with the modeling interface of fabletools'. This extends ATAforecasting to provide enhanced model specification and management, performance evaluation methods, and model combination tools. The Ata method (Yapar et al. (2019) <doi:10.15672/hujms.461032>), an alternative to exponential smoothing (described in Yapar (2016) <doi:10.15672/HJMS.201614320580>, Yapar et al. (2017) <doi:10.15672/HJMS.2017.493>), is a new univariate time series forecasting method which provides innovative solutions to issues faced during the initialization and optimization stages of existing forecasting methods. Forecasting performance of the Ata method is superior to existing methods both in terms of easy implementation and accurate forecasting. It can be applied to non-seasonal or seasonal time series which can be decomposed into four components (remainder, level, trend and seasonal).
In order to achieve accurate estimation without sparsity assumption on the precision matrix, element-wise inference on the precision matrix, and joint estimation of multiple Gaussian graphical models, a novel method is proposed and efficient algorithm is implemented. FLAG() is the main function given a data matrix, and FlagOneEdge() will be used when one pair of random variables are interested where their indices should be given. Flexible and Accurate Methods for Estimation and Inference of Gaussian Graphical Models with Applications, see Qian Y (2023) <doi:10.14711/thesis-991013223054603412>, Qian Y, Hu X, Yang C (2023) <doi:10.48550/arXiv.2306.17584>.
This package provides functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.
The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.
This package provides a collection of functions to optimize portfolios and to analyze them from different points of view.
This package implements the Fourier cumulative sum (CUSUM) cointegration test for detecting cointegration relationships in time series data with structural breaks. The test uses Fourier approximations to capture smooth structural changes and CUSUM statistics to test for cointegration stability. Based on methodology described in Zaghdoudi (2025) <doi:10.46557/001c.144076>. The corrected Akaike Information Criterion (AICc) is used for optimal frequency selection.
This package provides methods to solve Fuzzy Linear Programming Problems with fuzzy constraints (following different approaches proposed by Verdegay, Zimmermann, Werners and Tanaka), fuzzy costs, and fuzzy technological matrix.
This package provides a collection of functions for testing various aspects of univariate time series including independence and neglected nonlinearities. Further provides functions to investigate the chaotic behavior of time series processes and to simulate different types of chaotic time series maps.
We implement the Fast Covariance Estimation for Sparse Functional Data paper published in Statistics and Computing <doi: 10.1007/s11222-017-9744-8>.
Package for parametric relative survival analyses. It allows to model non-linear and non-proportional effects and both non proportional and non linear effects, using splines (B-spline and truncated power basis), Weighted Cumulative Index of Exposure effect, with correction model for the life table. Both non proportional and non linear effects are described in Remontet, L. et al. (2007) <doi:10.1002/sim.2656> and Mahboubi, A. et al. (2011) <doi:10.1002/sim.4208>.
Adds flow maps to ggplot2 plots. The flow maps consist of ggplot2 layers which visualize the nodes as circles and the bilateral flows between the nodes as bidirectional half-arrows.