Several tools for handling block-matrix diagonals and similar constructs are implemented. Block-diagonal matrices can be extracted or removed using two small functions implemented here. In addition, non-square matrices are supported. Block diagonal matrices occur when two dimensions of a data set are combined along one edge of a matrix. For example, trade-flow data in the decompr and gvc packages have each country-industry combination occur along both edges of the matrix.
An implementation of a clustering algorithm for functional data based on adaptive density peak detection technique, in which the density is estimated by functional k-nearest neighbor density estimation based on a proposed semi-metric between functions. The proposed functional data clustering algorithm is computationally fast since it does not need iterative process. (Alex Rodriguez and Alessandro Laio (2014) <doi:10.1126/science.1242072>; Xiao-Feng Wang and Yifan Xu (2016) <doi:10.1177/0962280215609948>).
Identifies potential data outliers and their impact on estimates and analyses. Tool for evaluation of study credibility. Uses the forward search approach of Atkinson and Riani, "Robust Diagnostic Regression Analysis", 2000,<ISBN: o-387-95017-6> to prepare descriptive statistics of a dataset that is to be analyzed by functions lm stats, glm stats, nls stats, lme nlme, or coxph survival, or their equivalent in another language. Includes graphics functions to display the descriptive statistics.
The different methods for defining, detecting, and categorising the extreme events known as heatwaves or cold-spells, as first proposed in Hobday et al. (2016) <doi: 10.1016/j.pocean.2015.12.014> and Hobday et al. (2018) <https://www.jstor.org/stable/26542662>. The functions in this package work on both air and water temperature data of hourly and daily temporal resolution. These detection algorithms may be used on non-temperature data as well.
Implementation of the methodology proposed in Data-driven design of targeted gene panels for estimating immunotherapy biomarkers', Bradley and Cannings (2021) <arXiv:2102.04296>. This package allows the user to fit generative models of mutation from an annotated mutation dataset, and then further to produce tunable linear estimators of exome-wide biomarkers. It also contains functions to simulate mutation annotated format (MAF) data, as well as to analyse the output and performance of models.
Helper functions that interface with the system utilities to learn about the local build environment. Lets you explore make rules to test the local configuration, or query pkg-config to find compiler flags and libs needed for building packages with external dependencies. Also contains tools to analyze which libraries that a installed R package linked to by inspecting output from ldd in combination with information from your distribution package manager, e.g. rpm or dpkg'.
Last.fm'<https://www.last.fm> is a music platform focussed on building a detailed profile of a users listening habits. It does this by scrobbling (recording) every track you listen to on other platforms ('spotify', youtube', soundcloud etc) and transferring them to your Last.fm database. This allows Last.fm to act as a complete record of your entire listening history. scrobbler provides helper functions to download and analyse your listening history in R.
This package implements a task queue system for asynchronous parallel computing using PostgreSQL <https://www.postgresql.org/> as a backend. Designed for embarrassingly parallel problems where tasks do not communicate with each other. Dynamically distributes tasks to workers, handles uneven load balancing, and allows new workers to join at any time. Particularly useful for running large numbers of independent tasks on high-performance computing (HPC) clusters with SLURM <https://slurm.schedmd.com/> job schedulers.
Deciphering hierarchy of agents exhibiting observable dominance events is a crucial problem in several disciplines, in particular in behavioural analysis of social animals, but also in social sciences and game theory. This package implements an inference approach based on graph theory, namely to extract the optimal acyclic subset of a weighted graph of dominance; this allows for hierarchy estimation through topological sorting. The package also contains infrastructure to investigate partially defined hierarchies and hierarchy dynamics.
This package provides an R interface for using AmCharts Library. Based on htmlwidgets', it provides a global architecture to generate JavaScript source code for charts. Most of classes in the library have their equivalent in R with S4 classes; for those classes, not all properties have been referenced but can easily be added in the constructors. Complex properties (e.g. JavaScript object) can be passed as named list. See examples at <https://datastorm-open.github.io/introduction_ramcharts/> and <https://www.amcharts.com/> for more information about the library. The package includes the free version of AmCharts Library. Its only limitation is a small link to the web site displayed on your charts. If you enjoy this library, do not hesitate to refer to this page <https://www.amcharts.com/online-store/> to purchase a licence, and thus support its creators and get a period of Priority Support. See also <https://www.amcharts.com/about/> for more information about AmCharts company.
Feature selection is critical in omics data analysis to extract restricted and meaningful molecular signatures from complex and high-dimension data, and to build robust classifiers. This package implements a method to assess the relevance of the variables for the prediction performances of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM binary classifiers. The signatures and the corresponding 'restricted' models are returned, enabling future predictions on new datasets.
PAIRADISE is a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across multiple individuals in a population. By treating the two alleles of an individual as paired, and multiple individuals sharing a heterozygous SNP as replicates, PAIRADISE formulates ASAS detection as a statistical problem for identifying differential alternative splicing from RNA-seq data with paired replicates.
Tools to clean and process text. Tools are geared at checking for substrings that are not optimal for analysis and replacing or removing them (normalizing) with more analysis friendly substrings (see Sproat, Black, Chen, Kumar, Ostendorf, & Richards (2001) doi:10.1006/csla.2001.0169) or extracting them into new variables. For example, emoticons are often used in text but not always easily handled by analysis algorithms. The replace_emoticon() function replaces emoticons with word equivalents.
This package provides an interface to infer the parameters of BASiCS using the variational inference (ADVI), Markov chain Monte Carlo (NUTS), and maximum a posteriori (BFGS) inference engines in the Stan programming language. BASiCS is a Bayesian hierarchical model that uses an adaptive Metropolis within Gibbs sampling scheme. Alternative inference methods provided by Stan may be preferable in some situations, for example for particularly large data or posterior distributions with difficult geometries.
The geomeTriD (Three-Dimensional Geometry) Package provides interactive 3D visualization of chromatin structures using the WebGL-based three.js (https://threejs.org/) or the rgl rendering library. It is designed to identify and explore spatial chromatin patterns within genomic regions. The package generates dynamic 3D plots and HTML widgets that integrate seamlessly with Shiny applications, enabling researchers to visualize chromatin organization, detect spatial features, and compare structural dynamics across different conditions and data types.
Helping biologists to choose the most suitable approach to link their research to conservation. After answering few questions on the data available, geographic and taxonomic scope, conserveR ranks existing methods for conservation prioritization and systematic conservation planning by suitability. The methods data base of conserveR contains 133 methods for conservation prioritization based on a systematic review of > 12,000 scientific publications from the fields of spatial conservation prioritization, systematic conservation planning, biogeography and ecology.
Calculates population attributable fraction causal effects. The causalPAF package contains a suite of functions for causal analysis calculations of population attributable fractions (PAF) given a causal diagram which apply both: Pathway-specific population attributable fractions (PS-PAFs) Oâ Connell and Ferguson (2022) <doi:10.1093/ije/dyac079> and Sequential population attributable fractions Ferguson, Oâ Connell, and Oâ Donnell (2020) <doi:10.1186/s13690-020-00442-x>. Results are presentable in both table and plot format.
Recent years have seen significant interest in neighborhood-based structural parameters that effectively represent the spatial characteristics of tree populations and forest communities, and possess strong applicability for guiding forestry practices. This package provides valuable information that enhances our understanding and analysis of the fine-scale spatial structure of tree populations and forest stands. Reference: Yan L, Tan W, Chai Z, et al (2019) <doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.03.007>.
Package for parametric relative survival analyses. It allows to model non-linear and non-proportional effects and both non proportional and non linear effects, using splines (B-spline and truncated power basis), Weighted Cumulative Index of Exposure effect, with correction model for the life table. Both non proportional and non linear effects are described in Remontet, L. et al. (2007) <doi:10.1002/sim.2656> and Mahboubi, A. et al. (2011) <doi:10.1002/sim.4208>.
Comfortable ways to work with hyperspectral data sets. I.e. spatially or time-resolved spectra, or spectra with any other kind of information associated with each of the spectra. The spectra can be data as obtained in XRF, UV/VIS, Fluorescence, AES, NIR, IR, Raman, NMR, MS, etc. More generally, any data that is recorded over a discretized variable, e.g. absorbance = f(wavelength), stored as a vector of absorbance values for discrete wavelengths is suitable.
Simplifies the generation of customized R Markdown PDF templates. A template may include an individual logo, typography, geometry or color scheme. The package provides a skeleton with detailed instructions for customizations. The skeleton can be modified by changing defaults in the YAML header, by adding additional LaTeX commands or by applying dynamic adjustments in R. Individual corporate design elements, such as a title page, can be added as R functions that produce LaTeX code.
Leverages the yum package to implement a YAML ('YAML Ain't Markup Language', a human friendly standard for data serialization; see <https://yaml.org>) standard for documenting justifications, such as for decisions taken during the planning, execution and analysis of a study or during the development of a behavior change intervention as illustrated by Marques & Peters (2019) <doi:10.17605/osf.io/ndxha>. These justifications are both human- and machine-readable, facilitating efficient extraction and organisation.
Algorithms to implement various Bayesian penalized survival regression models including: semiparametric proportional hazards models with lasso priors (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and three other shrinkage and group priors (Lee et al., Stat Anal Data Min, 2015 <doi:10.1002/sam.11266>); parametric accelerated failure time models with group/ordinary lasso prior (Lee et al. Comput Stat Data Anal, 2017 <doi:10.1016/j.csda.2017.02.014>).
This package provides tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Supports bare-bones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values. Includes tools for converting effect sizes, computing sporadic artifact corrections, reshaping meta-analytic databases, computing multivariate corrections for range variation, and more. Bugs can be reported to <https://github.com/psychmeta/psychmeta/issues> or <issues@psychmeta.com>.