This package implements parametric and non-parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010) <DOI:10.1214/10-STS321>, Imai, Keele and Tingley (2010) <DOI:10.1037/a0020761>, Imai, Tingley and Yamamoto (2013) <DOI:10.1111/j.1467-985X.2012.01032.x>, Imai and Yamamoto (2013) <DOI:10.1093/pan/mps040> and Yamamoto (2013). In addition to the estimation of causal mediation effects, the software also allows researchers to conduct sensitivity analysis for certain parametric models.
To facilitate and streamline phosphoproteomics data analysis, we developed SmartPhos, an R package for the pre-processing, quality control, and exploratory analysis of phosphoproteomics data generated by MaxQuant and Spectronaut. The package can be used either through the R command line or through an interactive ShinyApp called SmartPhos Explorer. The package contains methods such as normalization and normalization correction, transformation, imputation, batch effect correction, PCA, heatmap, differential expression, time-series clustering, gene set enrichment analysis, and kinase activity inference.
An implementation of sensitivity and robustness methods in Bayesian networks in R. It includes methods to perform parameter variations via a variety of co-variation schemes, to compute sensitivity functions and to quantify the dissimilarity of two Bayesian networks via distances and divergences. It further includes diagnostic methods to assess the goodness of fit of a Bayesian networks to data, including global, node and parent-child monitors. Reference: M. Leonelli, R. Ramanathan, R.L. Wilkerson (2022) <doi:10.1016/j.knosys.2023.110882>.
This package provides methods for powering cluster-randomized trials with two continuous co-primary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) <doi:10.2307/2531989>, Vickerstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Li et al. (2020) <doi:10.1111/biom.13212>.
This package provides tools for Delphi's COVIDcast Epidata API: data access, maps and time series plotting, and basic signal processing. The API includes a collection of numerous indicators relevant to the COVID-19 pandemic in the United States, including official reports, de-identified aggregated medical claims data, large-scale surveys of symptoms and public behavior, and mobility data, typically updated daily and at the county level. All data sources are documented at <https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html>.
This package implements methods for calculating disproportionate impact: the percentage point gap, proportionality index, and the 80% index. California Community Colleges Chancellor's Office (2017). Percentage Point Gap Method. <https://www.cccco.edu/-/media/CCCCO-Website/About-Us/Divisions/Digital-Innovation-and-Infrastructure/Research/Files/PercentagePointGapMethod2017.ashx>. California Community Colleges Chancellor's Office (2014). Guidelines for Measuring Disproportionate Impact in Equity Plans. <https://www.cccco.edu/-/media/CCCCO-Website/Files/DII/guidelines-for-measuring-disproportionate-impact-in-equity-plans-tfa-ada.pdf>.
Analysis and visualization of plant disease progress curve data. Functions for fitting two-parameter population dynamics models (exponential, monomolecular, logistic and Gompertz) to proportion data for single or multiple epidemics using either linear or no-linear regression. Statistical and visual outputs are provided to aid in model selection. Synthetic curves can be simulated for any of the models given the parameters. See Laurence V. Madden, Gareth Hughes, and Frank van den Bosch (2007) <doi:10.1094/9780890545058> for further information on the methods.
Extends the ergm.multi packages from the Statnet suite to fit (temporal) exponential-family random graph models for signed networks. The framework models positive and negative ties as interdependent, which allows estimation and testing of structural balance theory. The package also includes options for descriptive summaries, visualization, and simulation of signed networks. See Krivitsky, Koehly, and Marcum (2020) <doi:10.1007/s11336-020-09720-7> and Fritz, C., Mehrl, M., Thurner, P. W., & Kauermann, G. (2025) <doi:10.1017/pan.2024.21>.
Comparisons of floating point numbers are problematic due to errors associated with the binary representation of decimal numbers. Despite being aware of these problems, people still use numerical methods that fail to account for these and other rounding errors (this pitfall is the first to be highlighted in Circle 1 of Burns (2012) The R Inferno <https://www.burns-stat.com/pages/Tutor/R_inferno.pdf>). This package provides new relational operators useful for performing floating point number comparisons with a set tolerance.
This package provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. The package implements measures to model dispersal histories first presented by van Etten and Hijmans (2010) <doi:10.1371/journal.pone.0012060>. Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. The distances implemented in the package are used in geographical genetics, accessibility indicators, and may also have applications in other fields of geospatial analysis.
In order to improve performance for HTTP API clients, httpcache provides simple tools for caching and invalidating cache. It includes the HTTP verb functions GET, PUT, PATCH, POST, and DELETE, which are drop-in replacements for those in the httr package. These functions are cache-aware and provide default settings for cache invalidation suitable for RESTful APIs; the package also enables custom cache-management strategies. Finally, httpcache includes a basic logging framework to facilitate the measurement of HTTP request time and cache performance.
High level functions for hyperplane fitting (hyper.fit()) and visualising (hyper.plot2d() / hyper.plot3d()). In simple terms this allows the user to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimension dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane.
This package provides a joint mixture model has been developed by Majumdar et al. (2025) <doi:10.48550/arXiv.2412.17511> that integrates information from gene expression data and methylation data at the modelling stage to capture their inherent dependency structure, enabling simultaneous identification of differentially methylated cytosine-guanine dinucleotide (CpG) sites and differentially expressed genes. The model leverages a joint likelihood function that accounts for the nested structure in the data, with parameter estimation performed using an expectation-maximisation algorithm.
It provides a generic set of tools for initializing a synthetic population with each individual in specific disease states, and making transitions between those disease states according to the rates calculated on each timestep. The new version 1.0.0 has C++ code integration to make the functions run faster. It has also a higher level function to actually run the transitions for the number of timesteps that users specify. Additional functions will follow for changing attributes on demographic, health belief and movement.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstMatrix package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces. Opposed to the kst package, kstMatrix uses matrix representations for knowledge structures. Furthermore, kstMatrix contains several knowledge spaces developed by the research group around Cornelia Dowling through querying experts.
Lights Out is a puzzle game consisting of a grid of lights that are either on or off. Pressing any light will toggle it and its adjacent lights. The goal of the game is to switch all the lights off. This package provides an interface to play the game on different board sizes, both through the command line or with a visual application. Puzzles can also be solved using the automatic solver included. View a demo online at <https://daattali.com/shiny/lightsout/>.
Alternate font rendering is useful when rendering text to novel graphics outputs where modern font rendering is not available or where bespoke text positioning is required. Bitmap and vector fonts allow for custom layout and rendering using pixel coordinates and line drawing. Formatted text is created as a data.frame of pixel coordinates (for bitmap fonts) or stroke coordinates (for vector fonts). All text can be easily previewed as a matrix or raster image. A selection of fonts is included with this package.
Fast approximate methods for mixed logistic regression in genome-wide analysis studies (GWAS). Two computationnally efficient methods are proposed for obtaining effect size estimates (beta) in Mixed Logistic Regression in GWAS: the Approximate Maximum Likelihood Estimate (AMLE), and the Offset method. The wald test obtained with AMLE is identical to the score test. Data can be genotype matrices in plink format, or dosage (VCF files). The methods are described in details in Milet et al (2020) <doi:10.1101/2020.01.17.910109>.
This package provides a suite of functions for performing analyses, based on a multiverse approach, for conditioning data. Specifically, given the appropriate data, the functions are able to perform t-tests, analyses of variance, and mixed models for the provided data and return summary statistics and plots. The function is also able to return for all those tests p-values, confidence intervals, and Bayes factors. The methods are described in Lonsdorf, Gerlicher, Klingelhofer-Jens, & Krypotos (2022) <doi:10.1016/j.brat.2022.104072>.
Calculate the statistical power to detect clusters using kernel-based spatial relative risk functions that are estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
This package provides standardized effect decomposition (direct, indirect, and total effects) for three major structural equation modeling frameworks: lavaan', piecewiseSEM', and plspm'. Automatically handles zero-effect variables, generates publication-ready ggplot2 visualizations, and returns both wide-format and long-format effect tables. Supports effect filtering, multi-model object inputs, and customizable visualization parameters. For a general overview of the methods used in this package, see Rosseel (2012) <doi:10.18637/jss.v048.i02> and Lefcheck (2016) <doi:10.1111/2041-210X.12512>.
Testing and documenting code that communicates with remote servers can be painful. This package helps with writing tests for packages that use httr2. It enables testing all of the logic on the R sides of the API without requiring access to the remote service, and it also allows recording real API responses to use as test fixtures. The ability to save responses and load them offline also enables writing vignettes and other dynamic documents that can be distributed without access to a live server.
The Mass Spec Query Language (MassQL) is a domain-specific language enabling to express a query and retrieve mass spectrometry (MS) data in a more natural and understandable way for MS users. It is inspired by SQL and is by design programming language agnostic. The SpectraQL package adds support for the MassQL query language to R, in particular to MS data represented by Spectra objects. Users can thus apply MassQL expressions to analyze and retrieve specific data from Spectra objects.
Create beautiful and interactive visualizations in a single function call. The data.table package is utilized to perform the data wrangling necessary to prepare your data for the plot types you wish to build, along with allowing fast processing for big data. There are two broad classes of plots available: standard plots and machine learning evaluation plots. There are lots of parameters available in each plot type function for customizing the plots (such as faceting) and data wrangling (such as variable transformations and aggregation).