This package provides a set of functions to locate some programs available on the user machine. The package provides functions to locate Node.js', npm', LibreOffice', Microsoft Word', Microsoft PowerPoint', Microsoft Excel', Python', pip', Mozilla Firefox and Google Chrome'. User can test the availability of a program with eventually a version and call it with function system2() or system(). This allows the use of a single function to retrieve the path to a program regardless of the operating system and its configuration.
This package provides essential tools for the pre-processing techniques of matching and weighting multiply imputed datasets. The package includes functions for matching within and across multiply imputed datasets using various methods, estimating weights for units in the imputed datasets using multiple weighting methods, calculating causal effect estimates in each matched or weighted dataset using parametric or non-parametric statistical models, and pooling the resulting estimates according to Rubin's rules (please see <https://journal.r-project.org/archive/2021/RJ-2021-073/> for more details).
This package implements three families of parsimonious hidden Markov models (HMMs) for matrix-variate longitudinal data using the Expectation-Conditional Maximization (ECM) algorithm. The package supports matrix-variate normal, t, and contaminated normal distributions as emission distributions. For each hidden state, parsimony is achieved through the eigen-decomposition of the covariance matrices associated with the emission distribution. This approach results in a comprehensive set of 98 parsimonious HMMs for each type of emission distribution. Atypical matrix detection is also supported, utilizing the fitted (heavy-tailed) models.
This package provides a unified, programmatic interface for searching, browsing, and retrieving metadata from various international organization data repositories that use the National Data Archive ('NADA') software, such as the World Bank, FAO', and the International Household Survey Network ('IHSN'). Functions allow users to discover available data collections, country codes, and access types, perform complex searches using keyword and spatial/temporal filters, and retrieve detailed study information, including file lists and variable-level data dictionaries. It simplifies access to microdata for researchers and policy analysts globally.
This package provides a quadratic time dynamic programming algorithm can be used to compute an approximate solution to the problem of finding the most likely changepoints with respect to the Poisson likelihood, subject to a constraint on the number of segments, and the changes which must alternate: up, down, up, down, etc. For more info read <http://proceedings.mlr.press/v37/hocking15.html> "PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data" by TD Hocking et al, proceedings of ICML2015.
An implementation of the full-likelihood Bayes factor (FLB) for evaluating segregation evidence in clinical medical genetics. The method was introduced by Thompson et al. (2003) <doi:10.1086/378100>. This implementation supports custom penetrance values and liability classes, and allows visualisations and robustness analysis as presented in Ratajska et al. (2023) <doi:10.1002/mgg3.2107>. See also the online app shinyseg', <https://chrcarrizosa.shinyapps.io/shinyseg>, which offers interactive segregation analysis with many additional features (Carrizosa et al. (2024) <doi:10.1093/bioinformatics/btae201>).
This package provides a flexible tool for simulating complex longitudinal data using structural equations, with emphasis on problems in causal inference. Specify interventions and simulate from intervened data generating distributions. Define and evaluate treatment-specific means, the average treatment effects and coefficients from working marginal structural models. User interface designed to facilitate the conduct of transparent and reproducible simulation studies, and allows concise expression of complex functional dependencies for a large number of time-varying nodes. See the package vignette for more information, documentation and examples.
This package provides methods to calculate diagnostics for multicollinearity among predictors in a linear or generalized linear model. It also provides methods to visualize those diagnostics following Friendly & Kwan (2009), "Whereâ s Waldo: Visualizing Collinearity Diagnostics", <doi:10.1198/tast.2009.0012>. These include better tabular presentation of collinearity diagnostics that highlight the important numbers, a semi-graphic tableplot of the diagnostics to make warning and danger levels more salient, and a "collinearity biplot" of the smallest dimensions of predictor space, where collinearity is most apparent.
This package provides probability mass, distribution, quantile, random-variate generation, and method-of-moments parameter-estimation functions for the Delaporte distribution with parameterization based on Vose (2008). The Delaporte is a discrete probability distribution which can be considered the convolution of a negative binomial distribution with a Poisson distribution. Alternatively, it can be considered a counting distribution with both Poisson and negative binomial components. It has been studied in actuarial science as a frequency distribution which has more variability than the Poisson, but less than the negative binomial.
This package provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to:
Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions.
Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws.
Provide various summaries of draws in convenient formats.
Provide lightweight implementations of state of the art posterior inference diagnostics.
Implementation of the BRIk, FABRIk and FDEBRIk algorithms to initialise k-means. These methods are intended for the clustering of multivariate and functional data, respectively. They make use of the Modified Band Depth and bootstrap to identify appropriate initial seeds for k-means, which are proven to be better options than many techniques in the literature. Torrente and Romo (2021) <doi:10.1007/s00357-020-09372-3> It makes use of the functions kma and kma.similarity, from the archived package fdakma, by Alice Parodi et al.
Integrated, convenient, and uniform access to Canadian Census data and geography retrieved using the CensusMapper API. This package produces analysis-ready tidy data frames and spatial data in multiple formats, as well as convenience functions for working with Census variables, variable hierarchies, and region selection. API keys are freely available with free registration at <https://censusmapper.ca/api>. Census data and boundary geometries are reproduced and distributed on an "as is" basis with the permission of Statistics Canada (Statistics Canada 1996; 2001; 2006; 2011; 2016; 2021).
This package provides various tools of for clustering multivariate angular data on the torus. The package provides angular adaptations of usual clustering methods such as the k-means clustering, pairwise angular distances, which can be used as an input for distance-based clustering algorithms, and implements clustering based on the conformal prediction framework. Options for the conformal scores include scores based on a kernel density estimate, multivariate von Mises mixtures, and naive k-means clusters. Moreover, the package provides some basic data handling tools for angular data.
This package provides functions to help with analysis of longitudinal data featuring irregular observation times, where the observation times may be associated with the outcome process. There are functions to quantify the degree of irregularity, fit inverse-intensity weighted Generalized Estimating Equations (Lin H, Scharfstein DO, Rosenheck RA (2004) <doi:10.1111/j.1467-9868.2004.b5543.x>), perform multiple outputation (Pullenayegum EM (2016) <doi:10.1002/sim.6829>) and fit semi-parametric joint models (Liang Y (2009) <doi: 10.1111/j.1541-0420.2008.01104.x>).
This package provides an R interface to Julia', which is a high-level, high-performance dynamic programming language for numerical computing, see <https://julialang.org/> for more information. It provides a high-level interface as well as a low-level interface. Using the high level interface, you could call any Julia function just like any R function with automatic type conversion. Using the low level interface, you could deal with C-level SEXP directly while enjoying the convenience of using a high-level programming language like Julia'.
This package provides a comprehensive and computationally fast framework to analyze high dimensional data associated with an experimental design based on Multiple ANOVAs (MultANOVA). It includes testing the overall significance of terms in the model, post-hoc analyses of significant terms and variable selection. Details may be found in Mahieu, B., & Cariou, V. (2025). MultANOVA Followed by Post Hoc Analyses for Designed Highâ Dimensional Data: A Comprehensive Framework That Outperforms ASCA, rMANOVA, and VASCA. Journal of Chemometrics, 39(7). <doi:10.1002/cem.70039>.
An API client for NASA POWER global meteorology, surface solar energy and climatology data API. POWER (Prediction Of Worldwide Energy Resources) data are freely available for download with varying spatial resolutions dependent on the original data and with several temporal resolutions depending on the POWER parameter and community. This work is funded through the NASA Earth Science Directorate Applied Science Program. For more on the data themselves, the methodologies used in creating, a web-based data viewer and web access, please see <https://power.larc.nasa.gov/>.
Classification based analysis of DNA sequences to taxonomic groupings. This package primarily implements Naive Bayesian Classifier from the Ribosomal Database Project. This approach has traditionally been used to classify 16S rRNA gene sequences to bacterial taxonomic outlines; however, it can be used for any type of gene sequence. The method was originally described by Wang, Garrity, Tiedje, and Cole in Applied and Environmental Microbiology 73(16):5261-7 <doi:10.1128/AEM.00062-07>. The package also provides functions to read in FASTA'-formatted sequence data.
This package implements the routines and algorithms developed and analysed in "Multiple Systems Estimation for Sparse Capture Data: Inferential Challenges when there are Non-Overlapping Lists" Chan, L, Silverman, B. W., Vincent, K (2019) <arXiv:1902.05156>. This package explicitly handles situations where there are pairs of lists which have no observed individuals in common. It deals correctly with parameters whose estimated values can be considered as being negative infinity. It also addresses other possible issues of non-existence and non-identifiability of maximum likelihood estimates.
This package provides tools for the analysis of reverse-phase protein arrays (RPPAs), which are also known as tissue lysate arrays or simply lysate arrays'. The package's primary purpose is to input a set of quantification files representing dilution series of samples and control points taken from scanned RPPA slides and determine a relative log concentration value for each valid dilution series present in each slide and provide graphical visualization of the input and output data and their relationships. Other optional features include generation of quality control scores for judging the quality of the input data, spatial adjustment of sample points based on controls added to the slides, and various types of normalization of calculated values across a set of slides. The package was derived from a previous package named SuperCurve. For a detailed description of data inputs and outputs, usage information, and a list of related papers describing methods used in the package please review the vignette Guide_to_RPPASPACE'. RPPA SPACE: an R package for normalization and quantitation of Reverse-Phase Protein Array data'. Bioinformatics Nov 15;38(22):5131-5133. <doi: 10.1093/bioinformatics/btac665>.
Dunn's test computes stochastic dominance & reports pairwise comparisons. This is done following a Kruskal-Wallis test (Kruskal and Wallis, 1952). It employs Dunn's z-test-statistic approximations for rank statistics, conducting k(k-1)/2 comparisons. The null hypothesis assumes that the probability of a randomly selected value from the first group being larger than one from the second group is one half, similar to the Wilcoxon-Mann-Whitney test. Dunn's test serves as a test for median difference and takes into account tied ranks.
The software formalises a framework for classification and survival model evaluation in R. There are four stages; Data transformation, feature selection, model training, and prediction. The requirements of variable types and variable order are fixed, but specialised variables for functions can also be provided. The framework is wrapped in a driver loop that reproducibly carries out a number of cross-validation schemes. Functions for differential mean, differential variability, and differential distribution are included. Additional functions may be developed by the user, by creating an interface to the framework.
DriverNet is a package to predict functional important driver genes in cancer by integrating genome data (mutation and copy number variation data) and transcriptome data (gene expression data). The different kinds of data are combined by an influence graph, which is a gene-gene interaction network deduced from pathway data. A greedy algorithm is used to find the possible driver genes, which may mutated in a larger number of patients and these mutations will push the gene expression values of the connected genes to some extreme values.
Paquete creado con el fin de facilitar el cálculo y distribución del à ndice Socio Material Territorial (ISMT), elaborado por el Observatorio de Ciudades UC. La metodologà a completa está disponible en "ISMT" (<https://ideocuc-ocuc.hub.arcgis.com/datasets/6ed956450cfc4293b7d90df3ce3474e4/about>) [Observatorio de Ciudades UC (2019)]. || Package created to facilitate the calculation and distribution of the Socio-Material Territorial Index by Observatorio de Ciudades UC. The full methodology is available at "ISMT" (<https://ideocuc-ocuc.hub.arcgis.com/datasets/6ed956450cfc4293b7d90df3ce3474e4/about>) [Observatorio de Ciudades UC (2019)].