Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses an approach based on k-nearest neighbor information to sequentially detect change-points. Offers analytic approximations for false discovery control given user-specified average run length. Can be applied to any type of data (high-dimensional, non-Euclidean, etc.) as long as a reasonable similarity measure is available. See references (1) Chen, H. (2019) Sequential change-point detection based on nearest neighbors. The Annals of Statistics, 47(3):1381-1407. (2) Chu, L. and Chen, H. (2018) Sequential change-point detection for high-dimensional and non-Euclidean data <arXiv:1810.05973>.
Command-line and shiny GUI implementation of the GenEst models for estimating bird and bat mortality at wind and solar power facilities, following Dalthorp, et al. (2018) <doi:10.3133/tm7A2>.
Divide and conquer approach for estimating low-rank and sparse coefficient matrix in the generalized co-sparse factor regression. Please refer the manuscript Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127 for more details.
It provides an effective, efficient, and fast way to explore the Gene Ontology (GO). Given a set of genes, the package contains functions to assess the GO and obtain the terms associated with the genes and the levels of the GO terms. The package provides functions for the three different GO ontology. We discussed the methods explicitly in the following article <doi:10.1038/s41598-020-73326-3>.
Implementation of the Generalized Score Matching estimator in Yu et al. (2019) <https://jmlr.org/papers/v20/18-278.html> for non-negative graphical models (truncated Gaussian, exponential square-root, gamma, a-b models) and univariate truncated Gaussian distributions. Also includes the original estimator for untruncated Gaussian graphical models from Lin et al. (2016) <doi:10.1214/16-EJS1126>, with the addition of a diagonal multiplier.
Fits multiple-group latent class analysis (LCA) for exploring differences between populations in the data with a multilevel structure. There are two approaches to reflect group differences in glca: fixed-effect LCA (Bandeen-Roche et al (1997) <doi:10.1080/01621459.1997.10473658>; Clogg and Goodman (1985) <doi:10.2307/270847>) and nonparametric random-effect LCA (Vermunt (2003) <doi:10.1111/j.0081-1750.2003.t01-1-00131.x>).
This package provides a sparklyr <https://spark.rstudio.com/> extension that provides an R interface for GraphFrames <https://graphframes.github.io/>. GraphFrames is a package for Apache Spark that provides a DataFrame-based API for working with graphs. Functionality includes motif finding and common graph algorithms, such as PageRank and Breadth-first search.
This package provides functions for inference of ploidy from (Genotyping-by-sequencing) GBS data, including a function to infer allelic ratios and allelic proportions in a Bayesian framework.
This package provides functions for simulating and estimating parameters of various growth models, including Logistic, Exponential, Theta-logistic, Von-Bertalanffy, and Gompertz models. The package supports both simulated and real data analysis, including parameter estimation, visualization, and calculation of global and local estimates. The methods are based on research described by Md Aktar Ul Karim and Amiya Ranjan Bhowmick (2022) in (<https://www.researchsquare.com/article/rs-2363586/v1>). An interactive web application is also available at [GPEMR Web App](<https://gpem-r.shinyapps.io/GPEM-R/>).
Population-averaged models have been increasingly used in the design and analysis of cluster randomized trials (CRTs). To facilitate the applications of population-averaged models in CRTs, the package implements the generalized estimating equations (GEE) and matrix-adjusted estimating equations (MAEE) approaches to jointly estimate the marginal mean models correlation models both for general CRTs and stepped wedge CRTs. Despite the general GEE/MAEE approach, the package also implements a fast cluster-period GEE method by Li et al. (2022) <doi:10.1093/biostatistics/kxaa056> specifically for stepped wedge CRTs with large and variable cluster-period sizes and gives a simple and efficient estimating equations approach based on the cluster-period means to estimate the intervention effects as well as correlation parameters. In addition, the package also provides functions for generating correlated binary data with specific mean vector and correlation matrix based on the multivariate probit method in Emrich and Piedmonte (1991) <doi:10.1080/00031305.1991.10475828> or the conditional linear family method in Qaqish (2003) <doi:10.1093/biomet/90.2.455>.
Implementation of a Bayesian approach for estimating a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter.
This package provides a ggplot2 extension that provides tools for automatically creating scales to focus on subgroups of the data plotted without losing other information.
This package provides a native R implementation of grammatical evolution (GE). GE facilitates the discovery of programs that can achieve a desired goal. This is done by performing an evolutionary optimisation over a population of R expressions generated via a user-defined context-free grammar (CFG) and cost function.
Fits generalized linear models (GLMs) when there is missing data in both the response and categorical covariates. The functions implement likelihood-based methods using the Expectation and Maximization (EM) algorithm and optionally apply Firthâ s bias correction for improved inference. See Pradhan, Nychka, and Bandyopadhyay (2025) <https:>, Maiti and Pradhan (2009) <doi:10.1111/j.1541-0420.2008.01186.x>, Maity, Pradhan, and Das (2019) <doi:10.1080/00031305.2017.1407359> for further methodological details.
Consider a goodness-of-fit (GOF) problem of testing whether a random sample comes from one sample location-scale model where location and scale parameters are unknown. It is well known that Khmaladze martingale transformation method - which was proposed by Khmaladze (1981) <DOI:10.1137/1126027> - provides asymptotic distribution free test for the GOF problem. This package contains one function: KhmaladzeTrans(). In this version, KhmaladzeTrans() provides test statistic and critical value of GOF test for normal, Cauchy, and logistic distributions. This package used the main algorithm proposed by Kim (2020) <DOI:10.1007/s00180-020-00971-7> and tests for other distributions will be available at the later version.
This package provides a function that generates a customized correlation matrix based on limit values and proportions for intervals composed by its limits. It can also generate random matrices with low, medium, and high correlations, in which low, medium, and high thresholds are user-defined.
This package performs genetic algorithm (Scrucca, L (2013) <doi:10.18637/jss.v053.i04>) assisted genomic best liner unbiased prediction for genomic selection. It also provides a binning method in natural population for genomic selection under the principle of linkage disequilibrium for dimensional reduction.
Full descriptive statistics, physical description of sediment, metric or phi sieves.
The ggplot2 package provides simple functions for visualizing contours of 2-d kernel density estimates. ggdensity implements several additional density estimators as well as more interpretable visualizations based on highest density regions instead of the traditional height of the estimated density surface.
Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.
This package provides additional functions for creating beautiful tables with gt'. The functions are generally wrappers around boilerplate or adding opinionated niche capabilities and helpers functions.
This function converts mfpr, numeric, or character strings representing numbers to bigq format without loss of precision.
Dependency-free, ultra fast calculation of geodesic distances. Includes the reference nanometre-accuracy geodesic distances of Karney (2013) <doi:10.1007/s00190-012-0578-z>, as used by the sf package, as well as Haversine and Vincenty distances. Default distance measure is the "Mapbox cheap ruler" which is generally more accurate than Haversine or Vincenty for distances out to a few hundred kilometres, and is considerably faster. The main function accepts one or two inputs in almost any generic rectangular form, and returns either matrices of pairwise distances, or vectors of sequential distances.
Make R scripts reproducible, by ensuring that every time a given script is run, the same version of the used packages are loaded (instead of whichever version the user running the script happens to have installed). This is achieved by using the command groundhog.library() instead of the base command library(), and including a date in the call. The date is used to call on the same version of the package every time (the most recent version available at that date). Load packages from CRAN, GitHub, or Gitlab.