The function get_parameters() is intended to be used within a docker container to read keyword arguments from a .json file automagically. A tool.yaml file contains specifications on these keyword arguments, which are then passed as input to containerized R tools in the [tool-runner framework](<https://github.com/hydrocode-de/tool-runner>). A template for a containerized R tool, which can be used as a basis for developing new tools, is available at the following URL: <https://github.com/VForWaTer/tool_template_r>.
Conducts a cointegration test for high-dimensional vector autoregressions (VARs) of order k based on the large N,T asymptotics of Bykhovskaya and Gorin, 2022 (<doi:10.48550/arXiv.2202.07150>). The implemented test is a modification of the Johansen likelihood ratio test. In the absence of cointegration the test converges to the partial sum of the Airy-1 point process. This package contains simulated quantiles of the first ten partial sums of the Airy-1 point process that are precise up to the first three digits.
The past decade has demonstrated an increased need to better understand risks leading to systemic crises. This framework offers scholars, practitioners and policymakers a useful toolbox to explore such risks in financial systems. Specifically, this framework provides popular econometric and network measures to monitor systemic risk and to measure the consequences of regulatory decisions. These systemic risk measures are based on the frameworks of Adrian and Brunnermeier (2016) <doi:10.1257/aer.20120555> and Billio, Getmansky, Lo and Pelizzon (2012) <doi:10.1016/j.jfineco.2011.12.010>.
This package implements the S-type estimators, novel robust estimators for general linear regression models, addressing challenges such as outlier contamination and leverage points. This package introduces robust regression techniques to provide a robust alternative to classical methods and includes diagnostic tools for assessing model fit and performance. The methodology is based on the study, "Comparison of the Robust Methods in the General Linear Regression Model" by Sazak and Mutlu (2023). This package is designed for statisticians and applied researchers seeking advanced tools for robust regression analysis.
Sparse modeling provides a mean selecting a small number of non-zero effects from a large possible number of candidate effects. This package includes a suite of methods for sparse modeling: estimation via EM or MCMC, approximate confidence intervals with nominal coverage, and diagnostic and summary plots. The method can implement sparse linear regression and sparse probit regression. Beyond regression analyses, applications include subgroup analysis, particularly for conjoint experiments, and panel data. Future versions will include extensions to models with truncated outcomes, propensity score, and instrumental variable analysis.
This package creates a local Lightning Memory-Mapped Database ('LMDB') of many commonly used taxonomic authorities and provides functions that can quickly query this data. Supported taxonomic authorities include the Integrated Taxonomic Information System ('ITIS'), National Center for Biotechnology Information ('NCBI'), Global Biodiversity Information Facility ('GBIF'), Catalogue of Life ('COL'), and Open Tree Taxonomy ('OTT'). Name and identifier resolution using LMDB can be hundreds of times faster than either relational databases or internet-based queries. Precise data provenance information for data derived from naming providers is also included.
This package provides an R Client for the Europe PubMed Central RESTful Web Service. It gives access to both metadata on life science literature and open access full texts. Europe PMC indexes all PubMed content and other literature sources including Agricola, a bibliographic database of citations to the agricultural literature, or Biological Patents. In addition to bibliographic metadata, the client allows users to fetch citations and reference lists. Links between life-science literature and other EBI databases, including ENA, PDB or ChEMBL are also accessible.
The googleVis package provides an interface between R and the Google Charts API. Google Charts offer interactive charts which can be embedded into web pages. The functions of the googleVis package allow the user to visualise data stored in R data frames with Google Charts without uploading the data to Google. The output of a googleVis function is HTML code that contains the data and references to JavaScript functions hosted by Google. googleVis makes use of the internal R HTTP server to display the output locally.
This package contains the function to find marker genes for image-based spatial transcriptomics data. There are functions to create spatial vectors from the cell and transcript coordiantes, which are passed as inputs to find marker genes. Marker genes are detected for every cluster by two approaches. The first approach is by permtuation testing, which is implmented in parallel for finding marker genes for one sample study. The other approach is to build a linear model for every gene. This approach can account for multiple samples and backgound noise.
Calculates several entropy metrics for spatial data inspired by Boltzmann's entropy formula. It includes metrics introduced by Cushman for landscape mosaics (Cushman (2015) <doi:10.1007/s10980-015-0305-2>), and landscape gradients and point patterns (Cushman (2021) <doi:10.3390/e23121616>); by Zhao and Zhang for landscape mosaics (Zhao and Zhang (2019) <doi:10.1007/s10980-019-00876-x>); and by Gao et al. for landscape gradients (Gao et al. (2018) <doi:10.1111/tgis.12315>; Gao and Li (2019) <doi:10.1007/s10980-019-00854-3>).
Noise in the time-series data significantly affects the accuracy of the Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression are considered here). Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the time series data into sub-series and help to improve the model performance. The models can achieve higher prediction accuracy than the traditional ML models. Two models have been provided here for time series forecasting. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Power analysis is used in the estimation of sample sizes for experimental designs. Most programs and R packages will only output the highest recommended sample size to the user. Often the user input can be complicated and computing multiple power analyses for different treatment comparisons can be time consuming. This package simplifies the user input and allows the user to view all of the sample size recommendations or just the ones they want to see. The calculations used to calculate the recommended sample sizes are from the pwr package.
Please note: active development has moved to packages validate and errorlocate'. Facilitates reading and manipulating (multivariate) data restrictions (edit rules) on numerical and categorical data. Rules can be defined with common R syntax and parsed to an internal (matrix-like format). Rules can be manipulated with variable elimination and value substitution methods, allowing for feasibility checks and more. Data can be tested against the rules and erroneous fields can be found based on Fellegi and Holt's generalized principle. Rules dependencies can be visualized with using the igraph package.
Data-driven fMRI denoising with projection scrubbing (Pham et al (2022) <doi:10.1016/j.neuroimage.2023.119972>). Also includes routines for DVARS (Derivatives VARianceS) (Afyouni and Nichols (2018) <doi:10.1016/j.neuroimage.2017.12.098>), motion scrubbing (Power et al (2012) <doi:10.1016/j.neuroimage.2011.10.018>), aCompCor (anatomical Components Correction) (Muschelli et al (2014) <doi:10.1016/j.neuroimage.2014.03.028>), detrending, and nuisance regression. Projection scrubbing is also applicable to other outlier detection tasks involving high-dimensional data.
The goal of gsDesign2 is to enable fixed or group sequential design under non-proportional hazards. To enable highly flexible enrollment, time-to-event and time-to-dropout assumptions, gsDesign2 offers piecewise constant enrollment, failure rates, and dropout rates for a stratified population. This package includes three methods for designs: average hazard ratio, weighted logrank tests in Yung and Liu (2019) <doi:10.1111/biom.13196>, and MaxCombo tests. Substantial flexibility on top of what is in the gsDesign package is intended for selecting boundaries.
This package provides a set of tools for writing documents according to Geneva Graduate Institute conventions and regulations. The most common use is for writing and compiling theses or thesis chapters, as drafts or for examination with correct preamble formatting. However, the package also offers users to create HTML presentation slides with xaringan', complete problem sets, format posters, and, for course instructors, prepare a syllabus. The package includes additional functions for institutional color palettes, an institutional ggplot theme, a function for counting manuscript words, and a bibliographical analysis toolkit.
Estimation of joint models for multivariate longitudinal markers (with various distributions available) and survival outcomes (possibly accounting for competing risks) with Integrated Nested Laplace Approximations (INLA). The flexible and user friendly function joint() facilitates the use of the fast and reliable inference technique implemented in the INLA package for joint modeling. More details are given in the help page of the joint() function (accessible via ?joint in the R console) and the vignette associated to the joint() function (accessible via vignette("INLAjoint") in the R console).
In breeding experiments, mating environmental (ME) designs are very popular as mating designs are directly implemented in the field environment using block or row-column designs. Here, three functions are given related to three new methods which will generate mating diallel cross designs (Hinkelmann and Kempthorne, 1963<doi:10.2307/2333899>) or mating environmental (ME) designs along with design parameters, C matrix, eigenvalues (EVs), degree of fractionations (DF) and canonical efficiency factor (CEF). Another one function is added to check the properties of a given ME diallel cross design.
Neural Additive Model framework based on Generalized Additive Models from Hastie & Tibshirani (1990, ISBN:9780412343902), which trains a different neural network to estimate the contribution of each feature to the response variable. The networks are trained independently leveraging the local scoring and backfitting algorithms to ensure that the Generalized Additive Model converges and it is additive. The resultant Neural Network is a highly accurate and interpretable deep learning model, which can be used for high-risk AI practices where decision-making should be based on accountable and interpretable algorithms.
This package provides methods for plotting potentially large (raster) images interactively on a plain HTML canvas. In contrast to package mapview data are plotted without background map, but data can be projected to any spatial coordinate reference system. Supports plotting of classes RasterLayer', RasterStack', RasterBrick (from package raster') as well as png files located on disk. Interactivity includes zooming, panning, and mouse location information. In case of multi-layer RasterStacks or RasterBricks', RGB image plots are created (similar to raster::plotRGB - but interactive).
Spatial forecast verification refers to verifying weather forecasts when the verification set (forecast and observations) is on a spatial field, usually a high-resolution gridded spatial field. Most of the functions here require the forecast and observed fields to be gridded and on the same grid. For a thorough review of most of the methods in this package, please see Gilleland et al. (2009) <doi: 10.1175/2009WAF2222269.1> and for a tutorial on some of the main functions available here, see Gilleland (2022) <doi: 10.5065/4px3-5a05>.
Adds some functions to help in your coding etiquette. tinycodet primarily focuses on 4 aspects. 1) Safer decimal (in)equality testing, standard-evaluated alternatives to with() and aes(), and other functions for safer coding. 2) A new package import system, that attempts to combine the benefits of using a package without attaching it, with the benefits of attaching a package. 3) Extending the string manipulation capabilities of the stringi R package. 4) Reducing repetitive code. Besides linking to Rcpp', tinycodet has only one other dependency, namely stringi'.
This package provides methods to infer clonal tree configuration for a population of cells using single-cell RNA-seq data (scRNA-seq), and possibly other data modalities. Methods are also provided to assign cells to inferred clones and explore differences in gene expression between clones. These methods can flexibly integrate information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. A flexible beta-binomial error model that accounts for stochastic dropout events as well as systematic allelic imbalance is used.
This package provides pure C++ implementations for reading and writing several common data formats based on Google protocol-buffers. It currently supports rexp.proto for serialized R objects, geobuf.proto for binary geojson, and mvt.proto for vector tiles. This package uses the auto-generated C++ code by protobuf-compiler, hence the entire serialization is optimized at compile time. The RProtoBuf package on the other hand uses the protobuf runtime library to provide a general-purpose toolkit for reading and writing arbitrary protocol-buffer data in R.