Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a fast C++ implementation for computing various graph kernels including (1) simple kernels between vertex and/or edge label histograms, (2) graphlet kernels, (3) random walk kernels (popular baselines), and (4) the Weisfeiler-Lehman graph kernel (state-of-the-art).
Gene sets are fundamental for gene enrichment analysis. The package geneset enables querying gene sets from public databases including GO (Gene Ontology Consortium. (2004) <doi:10.1093/nar/gkh036>), KEGG (Minoru et al. (2000) <doi:10.1093/nar/28.1.27>), WikiPathway (Marvin et al. (2020) <doi:10.1093/nar/gkaa1024>), MsigDb (Arthur et al. (2015) <doi:10.1016/j.cels.2015.12.004>), Reactome (David et al. (2011) <doi:10.1093/nar/gkq1018>), MeSH (Ish et al. (2014) <doi:10.4103/0019-5413.139827>), DisGeNET (Janet et al. (2017) <doi:10.1093/nar/gkw943>), Disease Ontology (Lynn et al. (2011) <doi:10.1093/nar/gkr972>), Network of Cancer Genes (Dimitra et al. (2019) <doi:10.1186/s13059-018-1612-0>) and COVID-19 (Maxim et al. (2020) <doi:10.21203/rs.3.rs-28582/v1>). Gene sets are stored in the list object which provides data frame of geneset and geneset_name'. The geneset has two columns of term ID and gene ID. The geneset_name has two columns of terms ID and term description.
Create network-style visualizations of pairwise relationships using custom edge glyphs built on top of ggplot2'. The package supports both statistical and non-statistical data and allows users to represent directed relationships. This enables clear, publication-ready graphics for exploring and communicating relational structures in a wide range of domains. The method was first used in Abu-Akel et al. (2021) <doi:10.1371/journal.pone.0245100>. Code is released under the MIT License; included datasets are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0).
Two-step modeling with separation of sources of variation through analysis of variance and subsequent multivariate modeling through a range of unsupervised and supervised statistical methods. Separation can focus on removal of interfering effects or isolation of effects of interest. EF Mosleth et al. (2021) <doi:10.1038/s41598-021-82388-w> and EF Mosleth et al. (2020) <doi:10.1016/B978-0-12-409547-2.14882-6>.
This package provides functions to calculate the best linear unbiased prediction of genotype-by-environment metrics: ecovalence, environmental variance, Finlay and Wilkinson regression and Lin and Binns superiority measure, based on a multi-environment genomic prediction model.
Add glossaries to markdown and quarto documents by tagging individual words. Definitions can be provided inline or in a separate file.
Collection of datasets as prepared by Profs. A.P. Gore, S.A. Paranjape, and M.B. Kulkarni of Department of Statistics, Poona University, India. With their permission, first letter of their names forms the name of this package, the package has been built by me and made available for the benefit of R users. This collection requires a rich class of models and can be a very useful building block for a beginner.
We provide an efficient implementation for two-step multi-source transfer learning algorithms in high-dimensional generalized linear models (GLMs). The elastic-net penalized GLM with three popular families, including linear, logistic and Poisson regression models, can be fitted. To avoid negative transfer, a transferable source detection algorithm is proposed. We also provides visualization for the transferable source detection results. The details of methods can be found in "Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. Journal of the American Statistical Association, 118(544), 2684-2697.".
Currently provides geom_balance_of_trade(), a ggplot2 layer that fills the area between exports and imports series (with automatic crossing detection and conditional coloring for surplus vs. deficit), and overlays lines and points by default.
Analyze small-sample clustered or longitudinal data using modified generalized estimating equations with bias-adjusted covariance estimator. The package provides any combination of three modified generalized estimating equations and 11 bias-adjusted covariance estimators.
This package provides a variety of functions to fit linear and nonlinear regression with a large selection of distributions.
Likelihood-based boosting approaches for generalized mixed models are provided.
The Graphical Group Ridge GGRidge package package classifies ridge regression predictors in disjoint groups of conditionally correlated variables and derives different penalties (shrinkage parameters) for these groups of predictors. It combines the ridge regression method with the graphical model for high-dimensional data (i.e. the number of predictors exceeds the number of cases) or ill-conditioned data (e.g. in the presence of multicollinearity among predictors). The package reduces the mean square errors and the extent of over-shrinking of predictors as compared to the ridge method.Aldahmani, S. and Zoubeidi, T. (2020) <DOI:10.1080/00949655.2020.1803320>.
This package provides ggplot2 extensions for political map making. Implements new geometries for groups of simple feature geometries. Adds palettes and scales for red to blue color mapping and for discrete maps. Implements tools for easy label generation and placement, automatic map coloring, and themes.
Ease the transition between R vectors and markdown text. With gluedown and rmarkdown', users can create traditional vectors in R, glue those strings together with the markdown syntax, and print those formatted vectors directly to the document. This package primarily uses GitHub Flavored Markdown (GFM), an offshoot of the unambiguous CommonMark specification by John MacFarlane (2019) <https://spec.commonmark.org/>.
This package implements a new multiple imputation method that draws imputations from a latent joint multivariate normal model which underpins generally structured data. This model is constructed using a sequence of flexible conditional linear models that enables the resulting procedure to be efficiently implemented on high dimensional datasets in practice. See Robbins (2021) <arXiv:2008.02243>.
This package provides a ggplot2 extension that enables visualization of IP (Internet Protocol) addresses and networks. The address space is mapped onto the Cartesian coordinate system using a space-filling curve. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces.
Efficient computation of likelihoods in design-based choice response time models, including the Decision Diffusion Model, is supported. The package enables rapid evaluation of likelihood functions for both single- and multi-subject models across trial-level data. It also offers fast initialisation of starting parameters for genetic sampling with many Markov chains, facilitating estimation in complex models typically found in experimental psychology and behavioural science. These optimisations help reduce computational overhead in large-scale model fitting tasks.
An efficient algorithm to generate group assignments for classroom settings while minimizing repeated pairings across multiple rounds.
Simulating, visualizing and comparing tumor clonal data by using simple commands. This aims at providing a tool to help researchers to easily simulate tumor data and analyze the results of their approaches for studying the composition and the evolutionary history of tumors.
This package performs Geometrical Archetypal Analysis after creating Grid Archetypes which are the Cartesian Product of all minimum, maximum variable values. Since the archetypes are fixed now, we have the ability to compute the convex composition coefficients for all our available data points much faster by using the half part of Principal Convex Hull Archetypal method. Additionally we can decide to keep as archetypes the closer to the Grid Archetypes ones. Finally the number of archetypes is always 2 to the power of the dimension of our data points if we consider them as a vector space. Cutler, A., Breiman, L. (1994) <doi:10.1080/00401706.1994.10485840>. Morup, M., Hansen, LK. (2012) <doi:10.1016/j.neucom.2011.06.033>. Christopoulos, DT. (2024) <doi:10.13140/RG.2.2.14030.88642>.
Simulating single cell RNA-seq data with complicated structure. This package is developed based on the Splat method (Zappia, Phipson and Oshlack (2017) <doi:10.1186/s13059-017-1305-0>). GeneScape incorporates additional features to simulate single cell RNA-seq data with complicated differential expression and correlation structures, such as sub-cell-types, correlated genes (pathway genes) and hub genes.
This package provides the standard operations for signal processing on graphs: graph Fourier transform, spectral graph wavelet transform, visualization tools. It also implements a data driven method for graph signal denoising/regression, for details see De Loynes, Navarro, Olivier (2019) <arxiv:1906.01882>. The package also provides an interface to the SuiteSparse Matrix Collection, <https://sparse.tamu.edu/>, a large and widely used set of sparse matrix benchmarks collected from a wide range of applications.
Light procedures for learning Global Vector Autoregression model (GVAR) of Pesaran, Schuermann and Weiner (2004) <DOI:10.1198/073500104000000019> and Dees, di Mauro, Pesaran and Smith (2007) <DOI:10.1002/jae.932>.