Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an arsenal of R functions for large-scale statistical summaries, which are streamlined to work within the latest reporting tools in R and RStudio and which use formulas and versatile summary statistics for summary tables and models. The primary functions include
tableby, a Table-1-like summary of multiple variable types by the levels of one or more categorical variables;paired, a Table-1-like summary of multiple variable types paired across two time points;modelsum, which performs simple model fits on one or more endpoints for many variables (univariate or adjusted for covariates);freqlist, a powerful frequency table across many categorical variables;comparedf, a function for comparingdata.frames; andwrite2, a function to output tables to a document.
Statistical and biological validation of clustering results. This package implements Dunn Index, Silhouette, Connectivity, Stability, BHI and BSI. Further information can be found in Brock, G et al. (2008) <doi: 10.18637/jss.v025.i04>.
This package provides features to build gradient color maps.
This package provides functions used for local regression, likelihood and density estimation.
This package provides functions for working with magnetic resonance images. It supports reading and writing of popular file formats (DICOM, Analyze, NIfTI-1, NIfTI-2, MGH); interactive and non-interactive visualization; flexible image manipulation; metadata and sparse image handling.
This package computes the areas under the precision-recall (PR) and ROC curve for weighted (e.g. soft-labeled) and unweighted data. In contrast to other implementations, the interpolation between points of the PR curve is done by a non-linear piecewise function. In addition to the areas under the curves, the curves themselves can also be computed and plotted by a specific S3-method.
This package provides JSON parsing capability through the Rapidjson library.
This package provides a collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from the UCI repository.
This package provides basic infrastructure and some algorithms for the traveling salesperson problem(TSP) (also known as the traveling salesman problem).
This package provides interfaces to audio devices (mainly sample-based) from R to allow recording and playback of audio.
httpcode provides functionality for finding and explaining the meaning of HTTP status codes. Functions are included for searching for codes by full or partial number, by message, and to get appropriate dog and cat images for many status codes.
A workflow is an object that can bundle together your pre-processing, modeling, and post-processing requests. For example, if you have a recipe and parsnip model, these can be combined into a workflow. The advantages are:
You don’t have to keep track of separate objects in your workspace.
The recipe prepping and model fitting can be executed using a single call to
fit().If you have custom tuning parameter settings, these can be defined using a simpler interface when combined with
tune.In the future, workflows will be able to add post-processing operations, such as modifying the probability cutoff for two-class models.
This package provides a set of tools to help explain which variables are most important in a random forests. Various variable importance measures are calculated and visualized in different settings in order to get an idea on how their importance changes depending on our criteria (Hemant Ishwaran and Udaya B. Kogalur and Eiran Z. Gorodeski and Andy J. Minn and Michael S. Lauer (2010) <doi:10.1198/jasa.2009.tm08622>, Leo Breiman (2001) <doi:10.1023/A:1010933404324>).
This package offers extensive tools for phylogenetic analysis. It focuses on phylogenetic comparative biology but also includes methods for visualizing, analyzing, manipulating, reading, writing, and inferring phylogenetic trees. Functions for comparative biology include ancestral state reconstruction, model fitting, and phylogeny and trait data simulation. A broad range of plotting methods includes mapping trait evolution on trees, projecting trees into phenotype space or geographic maps, and visualizing correlated speciation between trees. Additional functions allow for reading, writing, analyzing, inferring, simulating, and manipulating phylogenetic trees and comparative data. Examples include computing consensus trees, simulating trees and data under various models, and attaching species or clades to a tree either randomly or non-randomly. This package provides numerous tools for tree manipulations and analyses that are valuable for phylogenetic research.
This package contains extensions to ggplot2.
Geomas:
geom_table,geom_plotandgeom_grobadd insets to plots using native data coordinates, whilegeom_table_npc,geom_plot_npcandgeom_grob_npcdo the same usingnpccoordinates through new aestheticsnpcxandnpcy.Statistics: select observations based on 2D density.
Positions: radial nudging away from a center point and nudging away from a line or curve.
This package provides a solution for analyzing digital images of plankton. In combination with ImageJ, an image analysis system, it processes digital images, measures individuals, trains for automatic classification of taxa, and finally, measures plankton samples (abundances, total and partial size spectra or biomasses, etc.).
Archimax copulas are a mixture of Archimedean and EV copulas. This package provides definitions of several parametric families of generator and dependence function, computes CDF and PDF, estimates parameters, tests for goodness of fit, generates random sample and checks copula properties for custom constructs. In the 2-dimensional case explicit formulas for density are used, contrary to higher dimensions when all derivatives are linearly approximated. Several non-archimax families (normal, FGM, Plackett) are provided as well.
R-tgb provides Bayesian nonstationary regression and treed Gaussian processes. In addition, it provides visualization functions, tree drawing, sensitivity analysis, multi-resolution models, and sequential experimental design tools, including ALM, ALC, and expected improvement for optimizing noisy black-box functions.
This is a package for estimation of one-dimensional probability distributions including kernel density estimation, weighted empirical cumulative distribution functions, Kaplan-Meier and reduced-sample estimators for right-censored data, heat kernels, kernel properties, quantiles and integration.
Provides implementations of functions which have been introduced in R since version 3.0.0. The backports are conditionally exported which results in R resolving the function names to the version shipped with R (if available) and uses the implemented backports as fallback. This way package developers can make use of the new functions without worrying about the minimum required R version.
This package implements numerically-stable Gauss-Hermite quadrature rules and utility functions for adaptive GH quadrature.
This package provides the header files for a stripped-down version of the plog header-only C++ logging library, and a method to log to R's standard error stream.
Webshot makes it easy to take screenshots of web pages from within R. It can also run Shiny applications locally and take screenshots of the application; and it can render and screenshot static as well as interactive R Markdown documents.
This package is an R package designed for QC, analysis, and exploration of single cell RNA-seq data. It easily enables widely-used analytical techniques, including the identification of highly variable genes, dimensionality reduction; PCA, ICA, t-SNE, standard unsupervised clustering algorithms; density clustering, hierarchical clustering, k-means, and the discovery of differentially expressed genes and markers.