Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of datasets essential for functional genomic analysis. Gene names, gene positions, cytoband information, sourced from Ensembl and phenotypes association graph prepared from GWAScatalog are included. Data is available in both GRCh37 and 38 builds. These datasets facilitate a wide range of genomic studies, including the identification of genetic variants, exploration of genomic features, and post-GWAS functional analysis.
Computes relative importance of main and interaction effects. Also, sum of the modified generalized weights is computed. Ibrahim et al. (2022) <doi:10.1134/S1064229322080051>.
This package provides tools for fluctuations analysis of mutant cells counts. Main reference is A. Mazoyer, R. Drouilhet, S. Despreaux and B. Ycart (2017) <doi:10.32614/RJ-2017-029>.
Extracts features from biological sequences. It contains most features which are presented in related work and also includes features which have never been introduced before. It extracts numerous features from nucleotide and peptide sequences. Each feature converts the input sequences to discrete numbers in order to use them as predictors in machine learning models. There are many features and information which are hidden inside a sequence. Utilizing the package, users can convert biological sequences to discrete models based on chosen properties. References: iLearn Z. Chen et al. (2019) <DOI:10.1093/bib/bbz041>. iFeature Z. Chen et al. (2018) <DOI:10.1093/bioinformatics/bty140>. <https://CRAN.R-project.org/package=rDNAse>. PseKRAAC Y. Zuo et al. PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition (2017) <DOI:10.1093/bioinformatics/btw564>. iDNA6mA-PseKNC P. Feng et al. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC (2019) <DOI:10.1016/j.ygeno.2018.01.005>. I. Dubchak et al. Prediction of protein folding class using global description of amino acid sequence (1995) <DOI:10.1073/pnas.92.19.8700>. W. Chen et al. Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome (2015) <DOI:10.1038/srep13859>.
It implements many univariate and multivariate permutation (and rotation) tests. Allowed tests: the t one and two samples, ANOVA, linear models, Chi Squared test, rank tests (i.e. Wilcoxon, Mann-Whitney, Kruskal-Wallis), Sign test and Mc Nemar. Test on Linear Models are performed also in presence of covariates (i.e. nuisance parameters). The permutation and the rotation methods to get the null distribution of the test statistics are available. It also implements methods for multiplicity control such as Westfall & Young minP procedure and Closed Testing (Marcus, 1976) and k-FWER. Moreover, it allows to test for fixed effects in mixed effects models.
Estimate parameters of univariate probability distributions with maximum likelihood and Bayesian methods.
Parse static-chamber greenhouse gas measurement files generated by a variety of instruments; compute flux rates using multi-observation metadata; and generate diagnostic metrics and plots. Designed to be easy to integrate into reproducible scientific workflows.
Many Fitbit users, and R-friendly Fitbit users especially, have found themselves curious about their Fitbit data. Fitbit aggregates a large amount of personal data, much of which is interesting for personal research and to satisfy curiosity, and is even potentially useful in medical settings. The goal of fitbitr is to make interfacing with the Fitbit API as streamlined as possible, to make it simple for R users of all backgrounds and comfort levels to analyze their Fitbit data and do whatever they want with it! Currently, fitbitr includes methods for pulling data on activity, sleep, and heart rate, but this list is likely to grow in the future as the package gains more traction and more requests for new methods to be implemented come in. You can find details on the Fitbit API at <https://dev.fitbit.com/build/reference/web-api/>.
Download flight and airport data from Brazilâ s Civil Aviation Agency (ANAC) <https://www.gov.br/anac/pt-br>. The data covers detailed information on aircraft, airports, and airport operations registered with ANAC. It also includes data on airfares, all international flights to and from Brazil, and domestic flights within the country.
The fusion learning method uses a model selection algorithm to learn from multiple data sets across different experimental platforms through group penalization. The responses of interest may include a mix of discrete and continuous variables. The responses may share the same set of predictors, however, the models and parameters differ across different platforms. Integrating information from different data sets can enhance the power of model selection. Package is based on Xin Gao, Raymond J. Carroll (2017) <arXiv:1610.00667v1>.
Recent years have seen significant interest in neighborhood-based structural parameters that effectively represent the spatial characteristics of tree populations and forest communities, and possess strong applicability for guiding forestry practices. This package provides valuable information that enhances our understanding and analysis of the fine-scale spatial structure of tree populations and forest stands. Reference: Yan L, Tan W, Chai Z, et al (2019) <doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.03.007>.
An implementation of the methodology described in Petersen and Mueller (2016) <doi:10.1214/15-AOS1363> for the functional data analysis of samples of density functions. Densities are first transformed to their corresponding log quantile densities, followed by ordinary Functional Principal Components Analysis (FPCA). Transformation modes of variation yield improved interpretation of the variability in the data as compared to FPCA on the densities themselves. The standard fraction of variance explained (FVE) criterion commonly used for functional data is adapted to the transformation setting, also allowing for an alternative quantification of variability for density data through the Wasserstein metric of optimal transport.
Satellite data collected between 2003 and 2022, in conjunction with gridded bathymetric data (50-150 m resolution), are used to estimate the irradiance reaching the bottom of a series of representative EU Arctic fjords. An Earth System Science Data (ESSD) manuscript, Schlegel et al. (2024), provides a detailed explanation of the methodology.
For binomial outcome data Alternate Binomial Distributions and Binomial Mixture Distributions are fitted when overdispersion is available.
This package implements fast change point detection algorithm based on the paper "Sequential Gradient Descent and Quasi-Newton's Method for Change-Point Analysis" by Xianyang Zhang, Trisha Dawn <https://proceedings.mlr.press/v206/zhang23b.html>. The algorithm is based on dynamic programming with pruning and sequential gradient descent. It is able to detect change points a magnitude faster than the vanilla Pruned Exact Linear Time(PELT). The package includes examples of linear regression, logistic regression, Poisson regression, penalized linear regression data, and whole lot more examples with custom cost function in case the user wants to use their own cost function.
Converts vectors of numbers into character vectors of numerals, including cardinals (one, two, three) and ordinals (first, second, third). Supports negative numbers, fractions, and arbitrary-precision integer and high-precision floating-point vectors provided by the bignum package.
This package provides methods for matrix factorization based on Wang and Stephens (2021) <https://jmlr.org/papers/v22/20-589.html>.
Aim: Supports the most frequently used methods to combine forecasts. Among others: Simple average, Ordinary Least Squares, Least Absolute Deviation, Constrained Least Squares, Variance-based, Best Individual model, Complete subset regressions and Information-theoretic (information criteria based).
Project Customer Retention based on Beta Geometric, Beta Discrete Weibull and Latent Class Discrete Weibull Models.This package is based on Fader and Hardie (2007) <doi:10.1002/dir.20074> and Fader and Hardie et al. (2018) <doi:10.1016/j.intmar.2018.01.002>.
This package provides a plugin for fiery that supports various forms of authorization and authentication schemes. Schemes can be required in various combinations or by themselves and can be combined with scopes to provide fine-grained access control to the server.
This package provides a comprehensive set of datasets and tools for causal inference research. The package includes data from clinical trials, cancer studies, epidemiological surveys, environmental exposures, and health-related observational studies. Designed to facilitate causal analysis, risk assessment, and advanced statistical modeling, it leverages datasets from packages such as causalOT', survival', causalPAF', evident', melt', and sanon'. The package is inspired by the foundational work of Pearl (2009) <doi:10.1017/CBO9780511803161> on causal inference frameworks.
For ordinal rating data, consider the accelerated EM algorithm to estimate and test models within the family of CUB models (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions). The procedure is built upon Louis identity for the observed information matrix. Best-subset variable selection is then implemented since it becomes more feasible from the computational point of view.
Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply ForeCA to multivariate time series data. ForeCA is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as PCA or ICA', ForeCA takes time dependency explicitly into account and searches for the most forecastable signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.
Efficient implementations of the algorithms in the Almost-Matching-Exactly framework for interpretable matching in causal inference. These algorithms match units via a learned, weighted Hamming distance that determines which covariates are more important to match on. For more information and examples, see the Almost-Matching-Exactly website.