_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-partition 0.2.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-purrr@1.0.4 r-progress@1.2.3 r-pillar@1.10.2 r-mass@7.3-65 r-magrittr@2.0.3 r-infotheo@1.2.0.1 r-ggplot2@3.5.2 r-forcats@1.0.0 r-dplyr@1.1.4 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://uscbiostats.github.io/partition/
Licenses: Expat
Synopsis: Agglomerative Partitioning Framework for Dimension Reduction
Description:

This package provides a fast and flexible framework for agglomerative partitioning. partition uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. partition is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. partition is based on the Partition framework discussed in Millstein et al. (2020) <doi:10.1093/bioinformatics/btz661>.

r-sumfregat 1.2.5
Propagated dependencies: r-seqminer@9.7 r-matrix@1.7-3 r-gbj@0.5.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sumFREGAT
Licenses: GPL 3
Synopsis: Fast Region-Based Association Tests on Summary Statistics
Description:

An adaptation of classical region/gene-based association analysis techniques to the use of summary statistics (P values and effect sizes) and correlations between genetic variants as input. It is a tool to perform the most popular and efficient gene-based tests using the results of genome-wide association (meta-)analyses without having the original genotypes and phenotypes at hand. See for details: Svishcheva et al (2019) Gene-based association tests using GWAS summary statistics. Bioinformatics. Belonogova et al (2022) SumSTAAR: A flexible framework for gene-based association studies using GWAS summary statistics. PLOS Comp Biol.

r-shinylive 0.3.0
Propagated dependencies: r-withr@3.0.2 r-whisker@0.4.1 r-rlang@1.1.6 r-renv@1.1.4 r-rappdirs@0.3.3 r-progress@1.2.3 r-pkgdepends@0.9.0 r-jsonlite@2.0.0 r-httr2@1.1.2 r-glue@1.8.0 r-gh@1.5.0 r-fs@1.6.6 r-cli@3.6.5 r-brio@1.1.5 r-archive@1.1.12
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://posit-dev.github.io/r-shinylive/
Licenses: Expat
Synopsis: Run 'shiny' Applications in the Browser
Description:

Exporting shiny applications with shinylive allows you to run them entirely in a web browser, without the need for a separate R server. The traditional way of deploying shiny applications involves in a separate server and client: the server runs R and shiny', and clients connect via the web browser. When an application is deployed with shinylive', R and shiny run in the web browser (via webR'): the browser is effectively both the client and server for the application. This allows for your shiny application exported by shinylive to be hosted by a static web server.

r-truncaipw 1.0.1
Propagated dependencies: r-survpen@2.0.2 r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://arxiv.org/pdf/2208.06836.pdf
Licenses: GPL 3
Synopsis: Doubly Robust Estimation under Covariate-Induced Dependent Left Truncation
Description:

Doubly robust estimation for the mean of an arbitrarily transformed survival time under covariate-induced dependent left truncation and noninformative right censoring. The functions truncAIPW(), truncAIPW_cen1(), and truncAIPW_cen2() compute the doubly robust estimators under the scenario without censoring and the two censoring scenarios, respectively. The package also contains three simulated data sets simu', simu_c1', and simu_c2', which are used to illustrate the usage of the functions in this package. Reference: Wang, Y., Ying, A., Xu, R. (2022) "Doubly robust estimation under covariate-induced dependent left truncation" <arXiv:2208.06836>.

r-vimpclust 0.1.0
Propagated dependencies: r-rlang@1.1.6 r-polychrome@1.5.4 r-pcamixdata@3.1 r-mclust@6.1.1 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://cran.r-project.org/package=vimpclust
Licenses: GPL 3
Synopsis: Variable Importance in Clustering
Description:

An implementation of methods related to sparse clustering and variable importance in clustering. The package currently allows to perform sparse k-means clustering with a group penalty, so that it automatically selects groups of numerical features. It also allows to perform sparse clustering and variable selection on mixed data (categorical and numerical features), by preprocessing each categorical feature as a group of numerical features. Several methods for visualizing and exploring the results are also provided. M. Chavent, J. Lacaille, A. Mourer and M. Olteanu (2020)<https://www.esann.org/sites/default/files/proceedings/2020/ES2020-103.pdf>.

r-multiplex 3.9
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/mplex/multiplex/
Licenses: GPL 3
Synopsis: Algebraic tools for the analysis of multiple social networks
Description:

Algebraic procedures for analyses of multiple social networks are delivered with this package. multiplex makes possible, among other things, to create and manipulate multiplex, multimode, and multilevel network data with different formats. Effective ways are available to treat multiple networks with routines that combine algebraic systems like the partially ordered semigroup with decomposition procedures or semiring structures with the relational bundles occurring in different types of multivariate networks. multiplex provides also an algebraic approach for affiliation networks through Galois derivations between families of the pairs of subsets in the two domains of the network with visualization options.

r-lazytrade 0.5.4
Propagated dependencies: r-tibble@3.2.1 r-stringr@1.5.1 r-reinforcementlearning@1.0.5 r-readr@2.1.5 r-openssl@2.3.3 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-h2o@3.44.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://vladdsm.github.io/myblog_attempt/topics/lazy%20trading/
Licenses: Expat
Synopsis: Learn Computer and Data Science using Algorithmic Trading
Description:

Provide sets of functions and methods to learn and practice data science using idea of algorithmic trading. Main goal is to process information within "Decision Support System" to come up with analysis or predictions. There are several utilities such as dynamic and adaptive risk management using reinforcement learning and even functions to generate predictions of price changes using pattern recognition deep regression learning. Summary of Methods used: Awesome H2O tutorials: <https://github.com/h2oai/awesome-h2o>, Market Type research of Van Tharp Institute: <https://vantharp.com/>, Reinforcement Learning R package: <https://CRAN.R-project.org/package=ReinforcementLearning>.

r-midfieldr 1.0.2
Propagated dependencies: r-wrapr@2.1.0 r-data-table@1.17.4 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://midfieldr.github.io/midfieldr/
Licenses: Expat
Synopsis: Tools and Methods for Working with MIDFIELD Data in 'R'
Description:

This package provides tools and demonstrates methods for working with individual undergraduate student-level records (registrar's data) in R'. Tools include filters for program codes, data sufficiency, and timely completion. Methods include gathering blocs of records, computing quantitative metrics such as graduation rate, and creating charts to visualize comparisons. midfieldr interacts with practice data provided in midfielddata', an R data package available at <https://midfieldr.github.io/midfielddata/>. midfieldr also interacts with the full MIDFIELD database for users who have access. This work is supported by the US National Science Foundation through grant numbers 1545667 and 2142087.

r-quadratik 1.1.3
Propagated dependencies: r-sn@2.1.1 r-scatterplot3d@0.3-44 r-rrcov@1.7-7 r-rlecuyer@0.3-8 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-mvtnorm@1.3-3 r-moments@0.14.1 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://CRAN.R-project.org/package=QuadratiK
Licenses: GPL 3+
Synopsis: Collection of Methods Constructed using Kernel-Based Quadratic Distances
Description:

It includes test for multivariate normality, test for uniformity on the d-dimensional Sphere, non-parametric two- and k-sample tests, random generation of points from the Poisson kernel-based density and clustering algorithm for spherical data. For more information see Saraceno G., Markatou M., Mukhopadhyay R. and Golzy M. (2024) <doi:10.48550/arXiv.2402.02290> Markatou, M. and Saraceno, G. (2024) <doi:10.48550/arXiv.2407.16374>, Ding, Y., Markatou, M. and Saraceno, G. (2023) <doi:10.5705/ss.202022.0347>, and Golzy, M. and Markatou, M. (2020) <doi:10.1080/10618600.2020.1740713>.

r-statiovar 0.1.3
Propagated dependencies: r-rlang@1.1.6 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/g-corbelli/statioVAR
Licenses: GPL 3
Synopsis: Trend Removal for Vector Autoregressive Workflows
Description:

Detrending multivariate time-series to approximate stationarity when dealing with intensive longitudinal data, prior to Vector Autoregressive (VAR) or multilevel-VAR estimation. Classical VAR assumes weak stationarity (constant first two moments), and deterministic trends inflate spurious autocorrelation, biasing Granger-causality and impulse-response analyses. All functions operate on raw panel data and write detrended columns back to the data set, but differ in the level at which the trend is estimated. See, for instance, Wang & Maxwell (2015) <doi:10.1037/met0000030>; Burger et al. (2022) <doi:10.4324/9781003111238-13>; Epskamp et al. (2018) <doi:10.1177/2167702617744325>.

r-sharpdata 1.4
Propagated dependencies: r-quadprog@1.5-8 r-kernsmooth@2.23-26
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sharpData
Licenses: FSDG-compatible
Synopsis: Data Sharpening
Description:

This package provides functions and data sets inspired by data sharpening - data perturbation to achieve improved performance in nonparametric estimation, as described in Choi, E., Hall, P. and Rousson, V. (2000). Capabilities for enhanced local linear regression function and derivative estimation are included, as well as an asymptotically correct iterated data sharpening estimator for any degree of local polynomial regression estimation. A cross-validation-based bandwidth selector is included which, in concert with the iterated sharpener, will often provide superior performance, according to a median integrated squared error criterion. Sample data sets are provided to illustrate function usage.

r-tchazards 1.1.4
Propagated dependencies: r-terra@1.8-50 r-sp@2.2-0 r-rcpp@1.0.14 r-rastervis@0.51.6 r-raster@3.6-32 r-ncdf4@1.24 r-latticeextra@0.6-30 r-geosphere@1.5-20
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/AusClimateService/TCHazaRds
Licenses: GPL 3+
Synopsis: Tropical Cyclone (Hurricane, Typhoon) Spatial Hazard Modelling
Description:

This package provides methods for generating modelled parametric Tropical Cyclone (TC) spatial hazard fields and time series output at point locations from TC tracks. R's compatibility to simply use fast cpp code via the Rcpp package and the wide range spatial analysis tools via the terra package makes it an attractive open source environment to study TCs'. This package estimates TC vortex wind and pressure fields using parametric equations originally coded up in python by TCRM <https://github.com/GeoscienceAustralia/tcrm> and then coded up in Cuda cpp by TCwindgen <https://github.com/CyprienBosserelle/TCwindgen>.

r-apatables 2.0.8
Propagated dependencies: r-tibble@3.2.1 r-mbess@4.9.3 r-dplyr@1.1.4 r-car@3.1-3 r-broom@1.0.8 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/dstanley4/apaTables
Licenses: FSDG-compatible
Synopsis: Create American Psychological Association (APA) Style Tables
Description:

This package provides a common task faced by researchers is the creation of APA style (i.e., American Psychological Association style) tables from statistical output. In R a large number of function calls are often needed to obtain all of the desired information for a single APA style table. As well, the process of manually creating APA style tables in a word processor is prone to transcription errors. This package creates Word files (.doc files) containing APA style tables for several types of analyses. Using this package minimizes transcription errors and reduces the number commands needed by the user.

r-bigpcacpp 0.9.0
Propagated dependencies: r-withr@3.0.2 r-rcpp@1.0.14 r-bigmemory@4.6.4 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://fbertran.github.io/bigPCAcpp/
Licenses: GPL 2+
Synopsis: Principal Component Analysis for 'bigmemory' Matrices
Description:

High performance principal component analysis routines that operate directly on bigmemory::big.matrix objects. The package avoids materialising large matrices in memory by streaming data through BLAS and LAPACK kernels and provides helpers to derive scores, loadings, correlations, and contribution diagnostics, including utilities that stream results into bigmemory'-backed matrices for file-based workflows. Additional interfaces expose scalable singular value decomposition, robust PCA, and robust SVD algorithms so that users can explore large matrices while tempering the influence of outliers. Scalable principal component analysis is also implemented, Elgamal, Yabandeh, Aboulnaga, Mustafa, and Hefeeda (2015) <doi:10.1145/2723372.2751520>.

r-distantia 2.0.2
Propagated dependencies: r-zoo@1.8-14 r-rcpp@1.0.14 r-progressr@0.15.1 r-lubridate@1.9.4 r-future-apply@1.11.3 r-foreach@1.5.2 r-dofuture@1.1.0
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://blasbenito.github.io/distantia/
Licenses: Expat
Synopsis: Advanced Toolset for Efficient Time Series Dissimilarity Analysis
Description:

Fast C++ implementation of Dynamic Time Warping for time series dissimilarity analysis, with applications in environmental monitoring and sensor data analysis, climate science, signal processing and pattern recognition, and financial data analysis. Built upon the ideas presented in Benito and Birks (2020) <doi:10.1111/ecog.04895>, provides tools for analyzing time series of varying lengths and structures, including irregular multivariate time series. Key features include individual variable contribution analysis, restricted permutation tests for statistical significance, and imputation of missing data via GAMs. Additionally, the package provides an ample set of tools to prepare and manage time series data.

r-litriddle 1.0.0
Propagated dependencies: r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://literaryquality.huygens.knaw.nl/
Licenses: GPL 3+
Synopsis: Dataset and Tools to Research the Riddle of Literary Quality
Description:

Dataset and functions to explore quality of literary novels. The package is a part of the Riddle of Literary Quality project, and it contains the data of a reader survey about fiction in Dutch, a description of the novels the readers rated, and the results of stylistic measurements of the novels. The package also contains functions to combine, analyze, and visualize these data. For more details, see: Eder M, van Zundert J, Lensink S, van Dalen-Oskam K (2022). Replicating The Riddle of Literary Quality: The litRiddle package for R. In _Digital Humanities 2022: Conference Abstracts_, 636-637.

r-mlmusingr 0.4.0
Propagated dependencies: r-wemix@4.0.3 r-tibble@3.2.1 r-performance@0.14.0 r-nlme@3.1-168 r-matrix@1.7-3 r-magrittr@2.0.3 r-lme4@1.1-37 r-generics@0.1.4 r-dplyr@1.1.4 r-broom@1.0.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/flh3/MLMusingR
Licenses: GPL 2
Synopsis: Practical Multilevel Modeling
Description:

Convenience functions and datasets to be used with Practical Multilevel Modeling using R. The package includes functions for calculating group means, group mean centered variables, and displaying some basic missing data information. A function for computing robust standard errors for linear mixed models based on Liang and Zeger (1986) <doi:10.1093/biomet/73.1.13> and Bell and McCaffrey (2002) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2002002/article/9058-eng.pdf?st=NxMjN1YZ> is included as well as a function for checking for level-one homoskedasticity (Raudenbush & Bryk, 2002, ISBN:076191904X).

r-pdspecest 1.2.6
Propagated dependencies: r-rdpack@2.6.4 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-multitaper@1.0-17 r-ddalpha@1.3.16
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/JorisChau/pdSpecEst
Licenses: GPL 2
Synopsis: An Analysis Toolbox for Hermitian Positive Definite Matrices
Description:

An implementation of data analysis tools for samples of symmetric or Hermitian positive definite matrices, such as collections of covariance matrices or spectral density matrices. The tools in this package can be used to perform: (i) intrinsic wavelet transforms for curves (1D) or surfaces (2D) of Hermitian positive definite matrices with applications to dimension reduction, denoising and clustering in the space of Hermitian positive definite matrices; and (ii) exploratory data analysis and inference for samples of positive definite matrices by means of intrinsic data depth functions and rank-based hypothesis tests in the space of Hermitian positive definite matrices.

r-subsemble 0.1.0
Propagated dependencies: r-superlearner@2.0-29
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ledell/subsemble
Licenses: ASL 2.0
Synopsis: An Ensemble Method for Combining Subset-Specific Algorithm Fits
Description:

The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) <doi:10.1080/02664763.2013.864263>.

r-stability 0.6.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-scales@1.4.0 r-rlang@1.1.6 r-reshape2@1.4.4 r-matrixstats@1.5.0 r-magrittr@2.0.3 r-lme4@1.1-37 r-ggplot2@3.5.2 r-ggfortify@0.4.17 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=stability
Licenses: GPL 2
Synopsis: Stability Analysis of Genotype by Environment Interaction (GEI)
Description:

This package provides functionalities for performing stability analysis of genotype by environment interaction (GEI) to identify superior and stable genotypes across diverse environments. It implements Eberhart and Russellâ s ANOVA method (1966)(<doi:10.2135/cropsci1966.0011183X000600010011x>), Finlay and Wilkinsonâ s Joint Linear Regression method (1963) (<doi:10.1071/AR9630742>), Wrickeâ s Ecovalence (1962, 1964), Shuklaâ s stability variance parameter (1972) (<doi:10.1038/hdy.1972.87>), Kangâ s simultaneous selection for high yield and stability (1991) (<doi:10.2134/agronj1991.00021962008300010037x>), Additive Main Effects and Multiplicative Interaction (AMMI) method and Genotype plus Genotypes by Environment (GGE) Interaction methods.

r-ptairdata 1.16.0
Propagated dependencies: r-signal@1.8-1 r-rhdf5@2.52.0
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://bioconductor.org/packages/ptairData
Licenses: GPL 3
Synopsis: PTR-TOF-MS volatolomics raw datasets from exhaled air and cell culture headspace
Description:

The package ptairData contains two raw datasets from Proton-Transfer-Reaction Time-of-Flight mass spectrometer acquisitions (PTR-TOF-MS), in the HDF5 format. One from the exhaled air of two volunteer healthy individuals with three replicates, and one from the cell culture headspace from two mycobacteria species and one control (culture medium only) with two replicates. Those datasets are used in the examples and in the vignette of the ptairMS package (PTR-TOF-MS data pre-processing). There are also used to gererate the ptrSet in the ptairMS data : exhaledPtrset and mycobacteriaSet.

r-dynconfir 1.1.0
Propagated dependencies: r-rlang@1.1.6 r-rcpp@1.0.14 r-progress@1.2.3 r-minqa@1.2.8 r-magrittr@2.0.3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/SeHellmann/dynConfiR
Licenses: GPL 3+
Synopsis: Dynamic Models for Confidence and Response Time Distributions
Description:

This package provides density functions for the joint distribution of choice, response time and confidence for discrete confidence judgments as well as functions for parameter fitting, prediction and simulation for various dynamical models of decision confidence. All models are explained in detail by Hellmann et al. (2023; Preprint available at <https://osf.io/9jfqr/>, published version: <doi:10.1037/rev0000411>). Implemented models are the dynaViTE model, dynWEV model, the 2DSD model (Pleskac & Busemeyer, 2010, <doi:10.1037/a0019737>), and various race models. C++ code for dynWEV and 2DSD is based on the rtdists package by Henrik Singmann.

r-indicator 0.1.3
Propagated dependencies: r-norm@1.0-11.1 r-missmethods@0.4.0 r-factominer@2.11
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/GianmarcoBorrata/Indicator
Licenses: FSDG-compatible
Synopsis: Composite 'Indicator' Construction and Imputation Data
Description:

Different functions includes constructing composite indicators, imputing missing data, and evaluating imputation techniques. Additionally, different tools for data normalization. Detailed methodologies of Indicator package are: OECD/European Union/EC-JRC (2008), "Handbook on Constructing Composite Indicators: Methodology and User Guide", OECD Publishing, Paris, <DOI:10.1787/533411815016>, Matteo Mazziotta & Adriano Pareto, (2018) "Measuring Well-Being Over Time: The Adjusted Mazziottaâ Pareto Index Versus Other Non-compensatory Indices" <DOI:10.1007/s11205-017-1577-5> and De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs" <DOI:10.1007/s11205-010-9727-z>.

r-mixkernel 0.9-2
Propagated dependencies: r-vegan@2.6-10 r-reticulate@1.42.0 r-quadprog@1.5-8 r-psych@2.5.3 r-phyloseq@1.52.0 r-mixomics@6.32.0 r-matrix@1.7-3 r-markdown@2.0 r-ldrtools@0.2-2 r-ggplot2@3.5.2 r-corrplot@0.95
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://mixkernel.clementine.wf
Licenses: GPL 2+
Synopsis: Omics Data Integration Using Kernel Methods
Description:

Kernel-based methods are powerful methods for integrating heterogeneous types of data. mixKernel aims at providing methods to combine kernel for unsupervised exploratory analysis. Different solutions are provided to compute a meta-kernel, in a consensus way or in a way that best preserves the original topology of the data. mixKernel also integrates kernel PCA to visualize similarities between samples in a non linear space and from the multiple source point of view <doi:10.1093/bioinformatics/btx682>. A method to select (as well as funtions to display) important variables is also provided <doi:10.1093/nargab/lqac014>.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
Total results: 30177