Transforms long data into a matrix form to allow for ease of input into modelling packages for regression, principal components, imputation or machine learning. It does this by pivoting on user defined columns, generating a key-value table for variable names to ensure one-to-one mappings are preserved. It is particularly useful when the indicator names in the columns are long descriptive strings, for example "Energy imports, net (% of energy use)". High level analysis wrapper functions for correlation and principal components analysis are provided.
Standard and extensible Eddy-Covariance data post-processing (Wutzler et al. (2018) <doi:10.5194/bg-15-5015-2018>) includes uStar-filtering, gap-filling, and flux-partitioning. The Eddy-Covariance (EC) micrometeorological technique quantifies continuous exchange fluxes of gases, energy, and momentum between an ecosystem and the atmosphere. It is important for understanding ecosystem dynamics and upscaling exchange fluxes. (Aubinet et al. (2012) <doi:10.1007/978-94-007-2351-1>). This package inputs pre-processed (half-)hourly data and supports further processing. First, a quality-check and filtering is performed based on the relationship between measured flux and friction velocity (uStar) to discard biased data (Papale et al. (2006) <doi:10.5194/bg-3-571-2006>). Second, gaps in the data are filled based on information from environmental conditions (Reichstein et al. (2005) <doi:10.1111/j.1365-2486.2005.001002.x>). Third, the net flux of carbon dioxide is partitioned into its gross fluxes in and out of the ecosystem by night-time based and day-time based approaches (Lasslop et al. (2010) <doi:10.1111/j.1365-2486.2009.02041.x>).
The package provides functions to create and use transcript-centric annotation databases/packages. The annotation for the databases are directly fetched from Ensembl using their Perl API. The functionality and data is similar to that of the TxDb packages from the GenomicFeatures package, but, in addition to retrieve all gene/transcript models and annotations from the database, the ensembldb package also provides a filter framework allowing to retrieve annotations for specific entries like genes encoded on a chromosome region or transcript models of lincRNA genes.
This package provides statistical tests for label-free LC-MS/MS data by spectral counts, to discover differentially expressed proteins between two biological conditions. Three tests are available: Poisson GLM regression, quasi-likelihood GLM regression, and the negative binomial of the edgeR package. The three models admit blocking factors to control for nuisance variables. To assure a good level of reproducibility a post-test filter is available, where we may set the minimum effect size considered biologicaly relevant, and the minimum expression of the most abundant condition.
This package provides a few functions aim to provide a statistic tool for three purposes. First, simulate kin pairs data based on the assumption that every trait is affected by genetic effects (A), common environmental effects (C) and unique environmental effects (E).Second, use kin pairs data to fit an ACE model and get model fit output.Third, calculate power of A estimate given a specific condition. For the mechanisms of power calculation, we suggest to check Visscher(2004)<doi:10.1375/twin.7.5.505>.
This package contains several functions for equivalence testing and practical significance testing. First, the tsti() command provides an automatic computation of three-sided testing results for a given estimate, standard error, and region of practical equivalence. For details, see Goeman, Solari, & Stijnen (2010) <doi:10.1002/sim.4002> and Isager & Fitzgerald (2024) <doi:10.31234/osf.io/8y925>. Second, the lddtest() command performs logarithmic density discontinuity equivalence testing for regression discontinuity designs. For reference, see Fitzgerald (2025) <doi:10.31222/osf.io/2dgrp_v1>.
This package provides a framework to detect Differential Item Functioning (DIF) in Generalized Partial Credit Models (GPCM) and special cases of the GPCM as proposed by Schauberger and Mair (2019) <doi:10.3758/s13428-019-01224-2>. A joint model is set up where DIF is explicitly parametrized and penalized likelihood estimation is used for parameter selection. The big advantage of the method called GPCMlasso is that several variables can be treated simultaneously and that both continuous and categorical variables can be used to detect DIF.
This package provides methods include converting series of event names to strings, finding common patterns in a group of strings, discovering featured patterns when comparing two groups of strings as well as the number and starting position of each pattern in each string, obtaining transition matrix, computing transition entropy, statistically comparing the difference between two groups of strings, and clustering string groups. Event names can be any action names or labels such as events in log files or areas of interest (AOIs) in eye tracking research.
This package provides a set of functions to locate some programs available on the user machine. The package provides functions to locate Node.js', npm', LibreOffice', Microsoft Word', Microsoft PowerPoint', Microsoft Excel', Python', pip', Mozilla Firefox and Google Chrome'. User can test the availability of a program with eventually a version and call it with function system2() or system(). This allows the use of a single function to retrieve the path to a program regardless of the operating system and its configuration.
This package provides essential tools for the pre-processing techniques of matching and weighting multiply imputed datasets. The package includes functions for matching within and across multiply imputed datasets using various methods, estimating weights for units in the imputed datasets using multiple weighting methods, calculating causal effect estimates in each matched or weighted dataset using parametric or non-parametric statistical models, and pooling the resulting estimates according to Rubin's rules (please see <https://journal.r-project.org/archive/2021/RJ-2021-073/> for more details).
This package implements three families of parsimonious hidden Markov models (HMMs) for matrix-variate longitudinal data using the Expectation-Conditional Maximization (ECM) algorithm. The package supports matrix-variate normal, t, and contaminated normal distributions as emission distributions. For each hidden state, parsimony is achieved through the eigen-decomposition of the covariance matrices associated with the emission distribution. This approach results in a comprehensive set of 98 parsimonious HMMs for each type of emission distribution. Atypical matrix detection is also supported, utilizing the fitted (heavy-tailed) models.
This package provides a unified, programmatic interface for searching, browsing, and retrieving metadata from various international organization data repositories that use the National Data Archive ('NADA') software, such as the World Bank, FAO', and the International Household Survey Network ('IHSN'). Functions allow users to discover available data collections, country codes, and access types, perform complex searches using keyword and spatial/temporal filters, and retrieve detailed study information, including file lists and variable-level data dictionaries. It simplifies access to microdata for researchers and policy analysts globally.
This package provides a quadratic time dynamic programming algorithm can be used to compute an approximate solution to the problem of finding the most likely changepoints with respect to the Poisson likelihood, subject to a constraint on the number of segments, and the changes which must alternate: up, down, up, down, etc. For more info read <http://proceedings.mlr.press/v37/hocking15.html> "PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data" by TD Hocking et al, proceedings of ICML2015.
This package provides a flexible tool for simulating complex longitudinal data using structural equations, with emphasis on problems in causal inference. Specify interventions and simulate from intervened data generating distributions. Define and evaluate treatment-specific means, the average treatment effects and coefficients from working marginal structural models. User interface designed to facilitate the conduct of transparent and reproducible simulation studies, and allows concise expression of complex functional dependencies for a large number of time-varying nodes. See the package vignette for more information, documentation and examples.
An implementation of the full-likelihood Bayes factor (FLB) for evaluating segregation evidence in clinical medical genetics. The method was introduced by Thompson et al. (2003) <doi:10.1086/378100>. This implementation supports custom penetrance values and liability classes, and allows visualisations and robustness analysis as presented in Ratajska et al. (2023) <doi:10.1002/mgg3.2107>. See also the online app shinyseg', <https://chrcarrizosa.shinyapps.io/shinyseg>, which offers interactive segregation analysis with many additional features (Carrizosa et al. (2024) <doi:10.1093/bioinformatics/btae201>).
This package provides methods to calculate diagnostics for multicollinearity among predictors in a linear or generalized linear model. It also provides methods to visualize those diagnostics following Friendly & Kwan (2009), "Whereâ s Waldo: Visualizing Collinearity Diagnostics", <doi:10.1198/tast.2009.0012>. These include better tabular presentation of collinearity diagnostics that highlight the important numbers, a semi-graphic tableplot of the diagnostics to make warning and danger levels more salient, and a "collinearity biplot" of the smallest dimensions of predictor space, where collinearity is most apparent.
This package provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to:
Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions.
Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws.
Provide various summaries of draws in convenient formats.
Provide lightweight implementations of state of the art posterior inference diagnostics.
This package provides probability mass, distribution, quantile, random-variate generation, and method-of-moments parameter-estimation functions for the Delaporte distribution with parameterization based on Vose (2008). The Delaporte is a discrete probability distribution which can be considered the convolution of a negative binomial distribution with a Poisson distribution. Alternatively, it can be considered a counting distribution with both Poisson and negative binomial components. It has been studied in actuarial science as a frequency distribution which has more variability than the Poisson, but less than the negative binomial.
Implementation of the BRIk, FABRIk and FDEBRIk algorithms to initialise k-means. These methods are intended for the clustering of multivariate and functional data, respectively. They make use of the Modified Band Depth and bootstrap to identify appropriate initial seeds for k-means, which are proven to be better options than many techniques in the literature. Torrente and Romo (2021) <doi:10.1007/s00357-020-09372-3> It makes use of the functions kma and kma.similarity, from the archived package fdakma, by Alice Parodi et al.
Integrated, convenient, and uniform access to Canadian Census data and geography retrieved using the CensusMapper API. This package produces analysis-ready tidy data frames and spatial data in multiple formats, as well as convenience functions for working with Census variables, variable hierarchies, and region selection. API keys are freely available with free registration at <https://censusmapper.ca/api>. Census data and boundary geometries are reproduced and distributed on an "as is" basis with the permission of Statistics Canada (Statistics Canada 1996; 2001; 2006; 2011; 2016; 2021).
This package provides various tools of for clustering multivariate angular data on the torus. The package provides angular adaptations of usual clustering methods such as the k-means clustering, pairwise angular distances, which can be used as an input for distance-based clustering algorithms, and implements clustering based on the conformal prediction framework. Options for the conformal scores include scores based on a kernel density estimate, multivariate von Mises mixtures, and naive k-means clusters. Moreover, the package provides some basic data handling tools for angular data.
This package provides functions to help with analysis of longitudinal data featuring irregular observation times, where the observation times may be associated with the outcome process. There are functions to quantify the degree of irregularity, fit inverse-intensity weighted Generalized Estimating Equations (Lin H, Scharfstein DO, Rosenheck RA (2004) <doi:10.1111/j.1467-9868.2004.b5543.x>), perform multiple outputation (Pullenayegum EM (2016) <doi:10.1002/sim.6829>) and fit semi-parametric joint models (Liang Y (2009) <doi: 10.1111/j.1541-0420.2008.01104.x>).
This package provides an R interface to Julia', which is a high-level, high-performance dynamic programming language for numerical computing, see <https://julialang.org/> for more information. It provides a high-level interface as well as a low-level interface. Using the high level interface, you could call any Julia function just like any R function with automatic type conversion. Using the low level interface, you could deal with C-level SEXP directly while enjoying the convenience of using a high-level programming language like Julia'.
This package provides a comprehensive and computationally fast framework to analyze high dimensional data associated with an experimental design based on Multiple ANOVAs (MultANOVA). It includes testing the overall significance of terms in the model, post-hoc analyses of significant terms and variable selection. Details may be found in Mahieu, B., & Cariou, V. (2025). MultANOVA Followed by Post Hoc Analyses for Designed Highâ Dimensional Data: A Comprehensive Framework That Outperforms ASCA, rMANOVA, and VASCA. Journal of Chemometrics, 39(7). <doi:10.1002/cem.70039>.