Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simulation, estimation and testing for geopolitical volatility (GEOVOL) based on the global common volatility model of Engle and Campos-Martins (2023) <doi:10.1016/j.jfineco.2022.09.009>. GEOVOL is modelled as a latent multiplicative volatility factor with heterogeneous factor loadings. Estimation is carried out as a maximization-maximization procedure, where GEOVOL and the GEOVOL loadings are estimated iteratively until convergence.
This package performs binary classification via Group Method of Data Handling (GMDH) - type neural network algorithms. There exist two main algorithms available in GMDH() and dceGMDH() functions. GMDH() performs classification via GMDH algorithm for a binary response and returns important variables. dceGMDH() performs classification via diverse classifiers ensemble based on GMDH (dce-GMDH) algorithm. Also, the package produces a well-formatted table of descriptives for a binary response. Moreover, it produces confusion matrix, its related statistics and scatter plot (2D and 3D) with classification labels of binary classes to assess the prediction performance. All GMDH2 functions are designed for a binary response (Dag et al., 2019, <https://download.atlantis-press.com/article/125911202.pdf>).
This package provides a statistical disclosure control tool to protect tables by suppression using the Gaussian elimination secondary suppression algorithm (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6>. A suggestion is to start by working with functions SuppressSmallCounts() and SuppressDominantCells(). These functions use primary suppression functions for the minimum frequency rule and the dominance rule, respectively. Novel functionality for suppression of disclosive cells is also included. General primary suppression functions can be supplied as input to the general working horse function, GaussSuppressionFromData(). Suppressed frequencies can be replaced by synthetic decimal numbers as described in Langsrud (2019) <doi:10.1007/s11222-018-9848-9>.
This package implements various Gifi methods in a user-friendly way: categorical principal component analysis (princals), multiple correspondence analysis (homals), monotone regression analysis (morals).
This package provides tools to streamline the extraction, processing, and visualization of Computable General Equilibrium (CGE) results from GTAP models. Designed for compatibility with both .har and .sl4 files, the package enables users to automate data preparation, apply mapping metadata, and generate high-quality plots and summary tables with minimal coding. GTAPViz supports flexible export options (e.g., Text, CSV, Stata', or Excel formats). This facilitates efficient post-simulation analysis for economic research and policy reporting. Includes helper functions to filter, format, and customize outputs with reproducible styling.
Simplify ggplot2 visualisation with ggblanket wrapper functions.
Add vector field layers to ggplots. Ideal for visualising wind speeds, water currents, electric/magnetic fields, etc. Accepts data.frames, simple features (sf), and spatiotemporal arrays (stars) objects as input. Vector fields are depicted as arrows starting at specified locations, and with specified angles and radii.
Derives group sequential clinical trial designs and describes their properties. Particular focus on time-to-event, binary, and continuous outcomes. Largely based on methods described in Jennison, Christopher and Turnbull, Bruce W., 2000, "Group Sequential Methods with Applications to Clinical Trials" ISBN: 0-8493-0316-8.
Given a group of genomes and their relationship with each other, the package clusters the genomes and selects the most representative members of each cluster. Additional data can be provided to the prioritize certain genomes. The results can be printed out as a list or a new phylogeny with graphs of the trees and distance distributions also available. For detailed introduction see: Thomas H Clarke, Lauren M Brinkac, Granger Sutton, and Derrick E Fouts (2018), GGRaSP: a R-package for selecting representative genomes using Gaussian mixture models, Bioinformatics, bty300, <doi:10.1093/bioinformatics/bty300>.
This package creates bar plots with rounded corners using ggplot2'. The code in this package was adapted from a solution provided by Stack Overflow user sthoch in the following post <https://stackoverflow.com/questions/62176038/r-ggplot2-bar-chart-with-round-corners-on-top-of-bar>.
Approaches a group sparse solution of an underdetermined linear system. It implements the proximal gradient algorithm to solve a lower regularization model of group sparse learning. For details, please refer to the paper "Y. Hu, C. Li, K. Meng, J. Qin and X. Yang. Group sparse optimization via l_p,q regularization. Journal of Machine Learning Research, to appear, 2017".
Routines that allow the user to run goodness of fit tests based on empirical distribution functions for formal model evaluation in a general likelihood model. In addition, functions are provided to test if a sample follows Normal or Gamma distributions, validate the normality assumptions in a linear model, and examine the appropriateness of a Gamma distribution in generalized linear models with various link functions. Michael Arthur Stephens (1976) <http://www.jstor.org/stable/2958206>.
The groupr package provides a more powerful version of grouped tibbles from dplyr'. It allows groups to be marked inapplicable, which is a simple but widely useful way to express structure in a dataset. It also provides powerful pivoting and other group manipulation functions.
This package provides functions for survey data including svydesign objects from the survey package that call ggplot2 to make bar charts, histograms, boxplots, and hexplots of survey data.
This package provides flexible tools for the visualization of genomic data. Supports interactive and static plots tailored for presentations and publications, with customizable features like colors, themes, and annotations to align with specific analytical and presentation goals.
Ranked Set Sampling (RSS) is a stratified sampling method known for its efficiency compared to Simple Random Sampling (SRS). When sample allocation is equal across strata, it is referred to as balanced RSS (BRSS) whereas unequal allocation is called unbalanced RSS (URSS), which is particularly effective for asymmetric or skewed distributions. This package offers practical statistical tools and sampling methods for both BRSS and URSS, emphasizing flexible sampling designs and inference for population means, medians, proportions, and Area Under the Curve (AUC). It incorporates parametric and nonparametric tests, including empirical likelihood ratio (LR) methods. The package provides ranked set sampling methods from a given population, including sampling with imperfect ranking using auxiliary variables. Furthermore, it provides tools for efficient sample allocation in URSS, ensuring greater efficiency than SRS and BRSS. For more details, refer e.g. to Chen et al. (2003) <doi:10.1007/978-0-387-21664-5>, Ahn et al. (2022) <doi:10.1007/978-3-031-14525-4_3>, and Ahn et al. (2024) <doi:10.1111/insr.12589>.
This package implements maximum likelihood estimation for Gaussian processes, supporting both isotropic and separable models with predictive capabilities. Includes penalized likelihood estimation following Li and Sudjianto (2005, <doi:10.1198/004017004000000671>), with cross-validation guided by decorrelated prediction error (DPE) metric. DPE metric, motivated by Mahalanobis distance, serves as evaluation criteria that accounts for predictive uncertainty in tuning parameter selection (Mutoh, Booth, and Stallrich, 2025, <doi:10.48550/arXiv.2511.18111>). Designed specifically for small datasets.
Automatically performs desired statistical tests (e.g. wilcox.test(), t.test()) to compare between groups, and adds the resulting p-values to the plot with an annotation bar. Visualizing group differences are frequently performed by boxplots, bar plots, etc. Statistical test results are often needed to be annotated on these plots. This package provides a convenient function that works on ggplot2 objects, performs the desired statistical test between groups of interest and annotates the test results on the plot.
Mapper-based survival analysis with transcriptomics data is designed to carry out. Mapper-based survival analysis is a modification of Progression Analysis of Disease (PAD) where survival data is taken into account in the filtering function. More details in: J. Fores-Martos, B. Suay-Garcia, R. Bosch-Romeu, M.C. Sanfeliu-Alonso, A. Falco, J. Climent, "Progression Analysis of Disease with Survival (PAD-S) by SurvMap identifies different prognostic subgroups of breast cancer in a large combined set of transcriptomics and methylation studies" <doi:10.1101/2022.09.08.507080>.
This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model. This package refers to J.N.K Rao and Isabel Molina (2015, ISBN: 978-1-118-73578-7), Bocci, C., & Petrucci, A. (2016)<doi:10.1002/9781118814963.ch13>, and Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018)<doi:10.21082/jpptp.v2n2.2018.p101-110>.
Design of group sequential trials, including non-binding futility analysis at multiple time points (Gallo, Mao, and Shih, 2014, <doi:10.1080/10543406.2014.932285>).
Uses ggplot2 to create normally distributed violin plots with specified means and standard deviations. This function can be useful in showing hypothetically normal distributions and confidence intervals.
This package implements a one-sector Armington-CES gravity model with general equilibrium (GE) effects. This model is designed to analyze international and domestic trade by capturing the impacts of trade costs and policy changes within a general equilibrium framework. Additionally, it includes a local parameter to run simulations on productivity. The package provides functions for calibration, simulation, and analysis of the model.
Several tools for Global Value Chain ('GVC') analysis are implemented.