Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implement a coherent and flexible protocol for animal color tagging. GenTag provides a simple computational routine with low CPU usage to create color sequences for animal tag. First, a single-color tag sequence is created from an algorithm selected by the user, followed by verification of the combination uniqueness. Three methods to produce color tag sequences are provided. Users can modify the main function core to allow a wide range of applications.
Quantitative trait loci mapping and genome wide association analysis are used to find candidate molecular marker or region associated with phenotype based on linkage analysis and linkage disequilibrium. Gene expression quantitative trait loci mapping is used to find candidate molecular marker or region associated with gene expression. In this package, we applied the method in Liu W. (2011) <doi:10.1007/s00122-011-1631-7> and Gusev A. (2016) <doi:10.1038/ng.3506> to genome and transcriptome wide association study, which is aimed at revealing the association relationship between phenotype and molecular markers, expression levels, molecular markers nested within different related expression effect and expression effect nested within different related molecular marker effect. F test based on full and reduced model are performed to obtain p value or likelihood ratio statistic. The best linear model can be obtained by stepwise regression analysis.
This package provides a statistical disclosure control tool to protect tables by suppression using the Gaussian elimination secondary suppression algorithm (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6>. A suggestion is to start by working with functions SuppressSmallCounts() and SuppressDominantCells(). These functions use primary suppression functions for the minimum frequency rule and the dominance rule, respectively. Novel functionality for suppression of disclosive cells is also included. General primary suppression functions can be supplied as input to the general working horse function, GaussSuppressionFromData(). Suppressed frequencies can be replaced by synthetic decimal numbers as described in Langsrud (2019) <doi:10.1007/s11222-018-9848-9>.
In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce GLMcat', an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix. The package accompanies the paper "GLMcat: An R Package for Generalized Linear Models for Categorical Responses" in the Journal of Statistical Software, Volume 114, Issue 9 (see <doi:10.18637/jss.v114.i09>).
This package implements a geographically weighted partial correlation which is an extension from gwss() function in the GWmodel package (Percival and Tsutsumida (2017) <doi:10.1553/giscience2017_01_s36>).
Mark your interesting genes on plot and support more parameters to handle your own gene set enrichment analysis plot.
This package makes available 50 objective functions for benchmarking the performance of global optimization algorithms.
This package provides functions which make using the Generalized Regression Estimator(GREG) J.N.K. Rao, Isabel Molina, (2015) <doi:10.3390/f11020244> and the Generalized Regression Estimator Operating on Resolutions of Y (GREGORY) easier. The functions are designed to work well within a forestry context, and estimate multiple estimation units at once. Compared to other survey estimation packages, this function has greater flexibility when describing the linear model.
Kernel regularized least squares, also known as kernel ridge regression, is a flexible machine learning method. This package implements this method by providing a smooth term for use with mgcv and uses random sketching to facilitate scalable estimation on large datasets. It provides additional functions for calculating marginal effects after estimation and for use with ensembles ('SuperLearning'), double/debiased machine learning ('DoubleML'), and robust/clustered standard errors ('sandwich'). Chang and Goplerud (2024) <doi:10.1017/pan.2023.27> provide further details.
This package provides functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.
The main purpose of this package is to allow fitting of mixture distributions with generalised additive models for location scale and shape models see Chapter 7 of Stasinopoulos et al. (2017) <doi:10.1201/b21973-4>.
This package provides functions for matching student-answers to teacher answers for a variety of data types.
Estimation of generalized linear models with correlated/clustered observations by use of generalized estimating equations (GEE). See e.g. Halekoh and Højsgaard, (2005, <doi:10.18637/jss.v015.i02>), for details. Several types of clustering are supported, including exchangeable variance structures, AR1 structures, M-dependent, user-specified variance structures and more. The model fitting computations are performed using modified code from the geeM package, while the interface and output objects have been written to resemble the geepack package. The package also contains additional tools for working with and inspecting results from the geepack package, e.g. a confint method for geeglm objects from geepack'.
Quantification, analysis, and visualization of urban greenness within city networks using data from OpenStreetMap <https://www.openstreetmap.org>.
This package provides a new take on the bar chart. Similar to a waffle style chart but instead of squares the layout resembles a brick wall.
Density function and generation of random variables from the Generalized Inverse Normal (GIN) distribution from Robert (1991) <doi:10.1016/0167-7152(91)90174-P>. Also provides density functions and generation from the GIN distribution truncated to positive or negative reals. Theoretical guarantees supporting the sampling algorithms and an application to Bayesian estimation of network formation models can be found in the working paper Ding, Estrada and Montoya-Blandón (2023) <https://www.smontoyablandon.com/publication/networks/network_externalities.pdf>.
Support for geostatistical analysis of multivariate data, in particular data with restrictions, e.g. positive amounts, compositions, distributional data, microstructural data, etc. It includes descriptive analysis and modelling for such data, both from a two-point Gaussian perspective and multipoint perspective. The methods mainly follow Tolosana-Delgado, Mueller and van den Boogaart (2018) <doi:10.1007/s11004-018-9769-3>.
An interactive mapping tool for geographically weighted correlation and partial correlation. Geographically weighted partial correlation coefficients are calculated following (Percival and Tsutsumida, 2017)<doi:10.1553/giscience2017_01_s36> and are described in greater detail in (Tsutsumida et al., 2019)<doi:10.5194/ica-abs-1-372-2019> and (Percival et al., 2021)<arXiv:2101.03491>.
Create network-style visualizations of pairwise relationships using custom edge glyphs built on top of ggplot2'. The package supports both statistical and non-statistical data and allows users to represent directed relationships. This enables clear, publication-ready graphics for exploring and communicating relational structures in a wide range of domains. The method was first used in Abu-Akel et al. (2021) <doi:10.1371/journal.pone.0245100>. Code is released under the MIT License; included datasets are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0).
This is a companion to Henry-Stewart talk by Zhao (2026, <doi:10.69645/FRFQ9519>), which gathers information, metadata and scripts to showcase modern genetic analysis -- ranging from testing of polymorphic variant(s) for Hardy-Weinberg equilibrium, association with traits using genetic and statistical models, Bayesian implementation, power calculation in study design, and genetic annotation. It also covers R integration with the Linux environment, GitHub, package creation and web applications. The earlier version by Zhao (2009, <doi:10.69645/DCRY5578>) provides an brief introduction to these topics.
Use GTFS (General Transit Feed Specification) data for routing from nominated start and end stations, for extracting isochrones', and travel times from any nominated start station to all other stations.
Sequential strategies for finding a game equilibrium are proposed in a black-box setting (expensive pay-off evaluations, no derivatives). The algorithm handles noiseless or noisy evaluations. Two acquisition functions are available. Graphical outputs can be generated automatically. V. Picheny, M. Binois, A. Habbal (2018) <doi:10.1007/s10898-018-0688-0>. M. Binois, V. Picheny, P. Taillandier, A. Habbal (2020) <doi:10.48550/arXiv.1902.06565>.
Computes the sample probability value (p-value) for the estimated coefficient from a standard genome-wide univariate regression. It computes the exact finite-sample p-value under the assumption that the measured phenotype (the dependent variable in the regression) has a known Bernoulli-normal mixture distribution. Finite-sample genome-wide regression p-values (Gwrpv) with a non-normally distributed phenotype (Gregory Connor and Michael O'Neill, bioRxiv 204727 <doi:10.1101/204727>).
Two-Step Lasso (TS-Lasso) and compound minimum methods to recover the abundance of missing peaks in mass spectrum analysis. TS-Lasso is an imputation method that handles various types of missing peaks simultaneously. This package provides the procedure to generate missing peaks (or data) for simulation study, as well as a tool to estimate and visualize the proportion of missing at random.