This is a set of simple utility functions to perform mutual conversion between the current Japanese calendar system that Wareki, the old Japanese calendar system that the Kyureki calendar and the Julian and Gregorian calendar. To calculate each calendar method, it converts to the Julian Day Number.
This package provides tools for keeping track of information, named "keys", about rows of data frame like objects. This is done by creating special attribute "keys" which is updated after every change in rows (subsetting, ordering, etc.). This package is designed to work tightly with dplyr package.
Exact and approximation algorithms for variable-subset selection in ordinary linear regression models. Either compute all submodels with the lowest residual sum of squares, or determine the single-best submodel according to a pre-determined statistical criterion. Hofmann et al. (2020) <doi:10.18637/jss.v093.i03>.
Different examples and methods for testing (including different proposals described in Ameijeiras-Alonso et al., 2019 <DOI:10.1007/s11749-018-0611-5>) and exploring (including the mode tree, mode forest and SiZer
) the number of modes using nonparametric techniques <DOI:10.18637/jss.v097.i09>.
Clustering of data under a non-ignorable missingness mechanism. Clustering is achieved by a semi-parametric mixture model and missingness is managed by using the pattern-mixture approach. More details of the approach are available in Du Roy de Chaumaray et al. (2020) <arXiv:2009.07662>
.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Wrapper around the Unix join facility which is more efficient than the built-in R routine merge()
. The package enables the joining of multiple files on disk at once. The files can be compressed and various filters can be deployed before joining. Compiles only under Unix.
Makes it easy to display descriptive information on a data set. Getting an easy overview of a data set by displaying and visualizing sample information in different tables (e.g., time and scope conditions). The package also provides publishable LaTeX
code to present the sample information.
Assessment of habitat selection by means of the permutation-based combination of sign tests (Fattorini et al., 2014 <DOI:10.1007/s10651-013-0250-7>). To exemplify the application of this procedure, habitat selection is assessed for a population of European Brown Hares settled in central Italy.
It provides users with functions to parse International Phonetic Alphabet (IPA) transcriptions into individual phones (tokenisation) based on default IPA symbols and optional user specified multi-character phones. The tokenised transcriptions can be used for obtaining counts of phones or for searching for words matching phonetic patterns.
This package provides fitting functions and other tools for decision confidence and metacognition researchers, including meta-d'/d', often considered to be the gold standard to measure metacognitive efficiency, and information-theoretic measures of metacognition. Also allows to fit several static models of decision making and confidence.
Through simfinapi, you can intuitively access the SimFin
Web-API (<https://www.simfin.com/>) to make SimFin
data easily available in R. To obtain an SimFin
API key (and thus to use this package), you need to register at <https://app.simfin.com/login>.
Calculating approximately unbiased (AU) p-values from multiscale bootstrap probabilities. See Shimodaira (2004) <doi:10.1214/009053604000000823>, Shimodaira (2008) <doi:10.1016/j.jspi.2007.04.001>, Terada ans Shimodaira (2017) <arXiv:1711.00949>
, and Shimodaira and Terada (2019) <doi.org/10.3389/fevo.2019.00174>.
This package provides methods for computing spatial, temporal, and spatiotemporal statistics as described in Gouhier and Guichard (2014) <doi:10.1111/2041-210X.12188>. These methods include empirical univariate, bivariate and multivariate variograms; fitting variogram models; phase locking and synchrony analysis; generating autocorrelated and cross-correlated matrices.
This package provides a suite of functions that allow a full, fast, and efficient Bayesian treatment of the Bradley--Terry model. Prior assumptions about the model parameters can be encoded through a multivariate normal prior distribution. Inference is performed using a latent variable representation of the model.
This package performs simulation and inference of diffusion processes on circle. Stochastic correlation models based on circular diffusion models are provided. For details see Majumdar, S. and Laha, A.K. (2024) "Diffusion on the circle and a stochastic correlation model" <doi:10.48550/arXiv.2412.06343>
.
Helpers for addressing the issue of disconnected spatial units. It allows for convenient adding and removal of neighbourhood connectivity between areal units prior to modelling, with the visual aid of maps. Post-modelling, it reduces the human workload for extracting, tidying and mapping predictions from areal models.
Fit design-based linear and logistic elastic nets with complex survey data considering the sampling design when defining training and test sets using replicate weights. Methods implemented in this package are described in: A. Iparragirre, T. Lumley, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.578>.
Non-imputational method for handling missing values in a prediction context, meaning that not only are there missing values in the training dataset, but also some values may be missing in future cases to be predicted. Based on the notion of regression averaging (Matloff (2017, ISBN: 9781498710916)).
Disaggregates low frequency time series data to higher frequency series. Implements the following methods for temporal disaggregation: Boot, Feibes and Lisman (1967) <DOI:10.2307/2985238>, Chow and Lin (1971) <DOI:10.2307/1928739>, Fernandez (1981) <DOI:10.2307/1924371> and Litterman (1983) <DOI:10.2307/1391858>.
The Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>) and The Cancer Genome Atlas (<https://portal.gdc.cancer.gov/>) are widely used medical public databases. Our platform integrates routine analysis and visualization tools for expression data to provide concise and intuitive data analysis and presentation.
This package provides new classes for (rotated) BB1, BB6, BB7, BB8, and Tawn copulas, extends the existing Gumbel and Clayton families with rotations, and allows to set up a vine copula model using the copula API. Corresponding objects from the VineCopula
API can easily be converted.
This package allows users to control the false discovery rate (FDR) or familywise error rate (FWER) for online multiple hypothesis testing, where hypotheses arrive in a stream. In this framework, a null hypothesis is rejected based on the evidence against it and on the previous rejection decisions.
This package provides an R interface to Megadepth. It is particularly useful for computing the coverage of a set of genomic regions across bigWig or BAM files. With this package, you can build base-pair coverage matrices for regions or annotations of your choice from BigWig files.