_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-transform 1.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=Transform
Licenses: GPL 2+
Synopsis: Statistical Transformations
Description:

This package performs various statistical transformations; Box-Cox and Log (Box and Cox, 1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Glog (Durbin et al., 2002) <doi:10.1093/bioinformatics/18.suppl_1.S105>, Neglog (Whittaker et al., 2005) <doi:10.1111/j.1467-9876.2005.00520.x>, Reciprocal (Tukey, 1957), Log Shift (Feng et al., 2016) <doi:10.1002/sta4.104>, Bickel-Docksum (Bickel and Doksum, 1981) <doi:10.1080/01621459.1981.10477649>, Yeo-Johnson (Yeo and Johnson, 2000) <doi:10.1093/biomet/87.4.954>, Square Root (Medina et al., 2019), Manly (Manly, 1976) <doi:10.2307/2988129>, Modulus (John and Draper, 1980) <doi:10.2307/2986305>, Dual (Yang, 2006) <doi:10.1016/j.econlet.2006.01.011>, Gpower (Kelmansky et al., 2013) <doi:10.1515/sagmb-2012-0030>. It also performs graphical approaches, assesses the success of the transformation via tests and plots.

r-binsmooth 0.2.2
Propagated dependencies: r-triangle@1.0 r-pracma@2.4.4 r-ineq@0.2-13
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=binsmooth
Licenses: Expat
Synopsis: Generate PDFs and CDFs from Binned Data
Description:

This package provides several methods for generating density functions based on binned data. Methods include step function, recursive subdivision, and optimized spline. Data are assumed to be nonnegative, the top bin is assumed to have no upper bound, but the bin widths need be equal. All PDF smoothing methods maintain the areas specified by the binned data. (Equivalently, all CDF smoothing methods interpolate the points specified by the binned data.) In practice, an estimate for the mean of the distribution should be supplied as an optional argument. Doing so greatly improves the reliability of statistics computed from the smoothed density functions. Includes methods for estimating the Gini coefficient, the Theil index, percentiles, and random deviates from a smoothed distribution. Among the three methods, the optimized spline (splinebins) is recommended for most purposes. The percentile and random-draw methods should be regarded as experimental, and these methods only support splinebins.

r-gtfs2emis 0.1.1
Propagated dependencies: r-units@0.8-7 r-terra@1.8-50 r-sfheaders@0.4.4 r-sf@1.0-21 r-gtfs2gps@2.1-3 r-future@1.49.0 r-furrr@0.3.1 r-data-table@1.17.4 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://ipeagit.github.io/gtfs2emis/
Licenses: Expat
Synopsis: Estimating Public Transport Emissions from General Transit Feed Specification (GTFS) Data
Description:

This package provides a bottom up model to estimate the emission levels of public transport systems based on General Transit Feed Specification (GTFS) data. The package requires two main inputs: i) Public transport data in the GTFS standard format; and ii) Some basic information on fleet characteristics such as fleet age, technology, fuel and Euro stage. As it stands, the package estimates several pollutants at high spatial and temporal resolutions. Pollution levels can be calculated for specific transport routes, trips, time of the day or for the transport system as a whole. The output with emission estimates can be extracted in different formats, supporting analysis on how emission levels vary across space, time and by fleet characteristics. A full description of the methods used in the gtfs2emis model is presented in Vieira, J. P. B.; Pereira, R. H. M.; Andrade, P. R. (2022) <doi:10.31219/osf.io/8m2cy>.

r-ibmpopsim 1.1.0
Propagated dependencies: r-rlang@1.1.6 r-readr@2.1.5 r-rcpp@1.0.14 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/DaphneGiorgi/IBMPopSim
Licenses: Expat
Synopsis: Individual Based Model Population Simulation
Description:

Simulation of the random evolution of heterogeneous populations using stochastic Individual-Based Models (IBMs) <doi:10.48550/arXiv.2303.06183>. The package enables users to simulate population evolution, in which individuals are characterized by their age and some characteristics, and the population is modified by different types of events, including births/arrivals, death/exit events, or changes of characteristics. The frequency at which an event can occur to an individual can depend on their age and characteristics, but also on the characteristics of other individuals (interactions). Such models have a wide range of applications. For instance, IBMs can be used for simulating the evolution of a heterogeneous insurance portfolio with selection or for validating mortality forecasts. This package overcomes the limitations of time-consuming IBMs simulations by implementing new efficient algorithms based on thinning methods, which are compiled using the Rcpp package while providing a user-friendly interface.

r-disprofas 0.2.1
Propagated dependencies: r-rlang@1.1.6 r-ggplot2@3.5.2 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/piusdahinden/disprofas
Licenses: GPL 2+
Synopsis: Non-Parametric Dissolution Profile Analysis
Description:

Similarity of dissolution profiles is assessed using the similarity factor f2 according to the EMA guideline (European Medicines Agency 2010) "On the investigation of bioequivalence". Dissolution profiles are regarded as similar if the f2 value is between 50 and 100. For the applicability of the similarity factor f2, the variability between profiles needs to be within certain limits. Often, this constraint is violated. One possibility in this situation is to resample the measured profiles in order to obtain a bootstrap estimate of f2 (Shah et al. (1998) <doi:10.1023/A:1011976615750>). Other alternatives are the model-independent non-parametric multivariate confidence region (MCR) procedure (Tsong et al. (1996) <doi:10.1177/009286159603000427>) or the T2-test for equivalence procedure (Hoffelder (2016) <https://www.ecv.de/suse_item.php?suseId=Z|pi|8430>). Functions for estimation of f1, f2, bootstrap f2, MCR / T2-test for equivalence procedure are implemented.

r-fable-ata 0.0.6
Propagated dependencies: r-tsibble@1.1.6 r-tsbox@0.4.2 r-tibble@3.2.1 r-rlang@1.1.6 r-lubridate@1.9.4 r-fabletools@0.5.1 r-dplyr@1.1.4 r-distributional@0.5.0 r-ataforecasting@0.0.60
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://alsabtay.github.io/fable.ata/
Licenses: GPL 3+
Synopsis: 'ATAforecasting' Modelling Interface for 'fable' Framework
Description:

Allows ATA (Automatic Time series analysis using the Ata method) models from the ATAforecasting package to be used in a tidy workflow with the modeling interface of fabletools'. This extends ATAforecasting to provide enhanced model specification and management, performance evaluation methods, and model combination tools. The Ata method (Yapar et al. (2019) <doi:10.15672/hujms.461032>), an alternative to exponential smoothing (described in Yapar (2016) <doi:10.15672/HJMS.201614320580>, Yapar et al. (2017) <doi:10.15672/HJMS.2017.493>), is a new univariate time series forecasting method which provides innovative solutions to issues faced during the initialization and optimization stages of existing forecasting methods. Forecasting performance of the Ata method is superior to existing methods both in terms of easy implementation and accurate forecasting. It can be applied to non-seasonal or seasonal time series which can be decomposed into four components (remainder, level, trend and seasonal).

r-matchfeat 1.0
Propagated dependencies: r-foreach@1.5.2 r-clue@0.3-66
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=matchFeat
Licenses: GPL 2
Synopsis: One-to-One Feature Matching
Description:

Statistical methods to match feature vectors between multiple datasets in a one-to-one fashion. Given a fixed number of classes/distributions, for each unit, exactly one vector of each class is observed without label. The goal is to label the feature vectors using each label exactly once so to produce the best match across datasets, e.g. by minimizing the variability within classes. Statistical solutions based on empirical loss functions and probabilistic modeling are provided. The Gurobi software and its R interface package are required for one of the package functions (match.2x()) and can be obtained at <https://www.gurobi.com/> (free academic license). For more details, refer to Degras (2022) <doi:10.1080/10618600.2022.2074429> "Scalable feature matching for large data collections" and Bandelt, Maas, and Spieksma (2004) <doi:10.1057/palgrave.jors.2601723> "Local search heuristics for multi-index assignment problems with decomposable costs".

r-chromomap 4.1.1
Propagated dependencies: r-htmltools@0.5.8.1 r-htmlwidgets@1.6.4
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/package=chromoMap
Licenses: GPL 3 ISC
Synopsis: Interactive genomic visualization of biological data
Description:

This package provides interactive, configurable and graphics visualization of the chromosome regions of any living organism allowing users to map chromosome elements (like genes, SNPs etc.) on the chromosome plot. It introduces a special plot viz. the "chromosome heatmap" that, in addition to mapping elements, can visualize the data associated with chromosome elements (like gene expression) in the form of heat colors. Users can investigate the detailed information about the mappings (like gene names or total genes mapped on a location) or can view the magnified single or double stranded view of the chromosome at a location showing each mapped element in sequential order. The package provide multiple features like visualizing multiple sets, chromosome heat-maps, group annotations, adding hyperlinks, and labelling. The plots can be saved as HTML documents that can be customized and shared easily. In addition, you can include them in R Markdown or in R Shiny applications.

r-latentcor 2.0.1
Propagated dependencies: r-plotly@4.10.4 r-pcapp@2.0-5 r-mnormt@2.1.1 r-microbenchmark@1.5.0 r-matrix@1.7-3 r-mass@7.3-65 r-heatmaply@1.5.0 r-ggplot2@3.5.2 r-geometry@0.5.2 r-future@1.49.0 r-foreach@1.5.2 r-fmultivar@4031.84 r-dorng@1.8.6.2 r-dofuture@1.1.0
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=latentcor
Licenses: GPL 3
Synopsis: Fast Computation of Latent Correlations for Mixed Data
Description:

The first stand-alone R package for computation of latent correlation that takes into account all variable types (continuous/binary/ordinal/zero-inflated), comes with an optimized memory footprint, and is computationally efficient, essentially making latent correlation estimation almost as fast as rank-based correlation estimation. The estimation is based on latent copula Gaussian models. For continuous/binary types, see Fan, J., Liu, H., Ning, Y., and Zou, H. (2017). For ternary type, see Quan X., Booth J.G. and Wells M.T. (2018) <arXiv:1809.06255>. For truncated type or zero-inflated type, see Yoon G., Carroll R.J. and Gaynanova I. (2020) <doi:10.1093/biomet/asaa007>. For approximation method of computation, see Yoon G., Müller C.L. and Gaynanova I. (2021) <doi:10.1080/10618600.2021.1882468>. The latter method uses multi-linear interpolation originally implemented in the R package <https://cran.r-project.org/package=chebpol>.

r-sampcompr 0.3.1.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-svrep@0.9.1 r-survey@4.4-2 r-sandwich@3.1-1 r-rlang@1.1.6 r-reshape2@1.4.4 r-readr@2.1.5 r-purrr@1.0.4 r-psych@2.5.3 r-magrittr@2.0.3 r-lmtest@0.9-40 r-hmisc@5.2-3 r-ggplot2@3.5.2 r-future@1.49.0 r-furrr@0.3.1 r-forcats@1.0.0 r-dplyr@1.1.4 r-data-table@1.17.4 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://bjoernrohr.github.io/sampcompR/
Licenses: GPL 3
Synopsis: Comparing and Visualizing Differences Between Surveys
Description:

Easily analyze and visualize differences between samples (e.g., benchmark comparisons, nonresponse comparisons in surveys) on three levels. The comparisons can be univariate, bivariate or multivariate. On univariate level the variables of interest of a survey and a comparison survey (i.e. benchmark) are compared, by calculating one of several difference measures (e.g., relative difference in mean), and an average difference between the surveys. On bivariate level a function can calculate significant differences in correlations for the surveys. And on multivariate levels a function can calculate significant differences in model coefficients between the surveys of comparison. All of those differences can be easily plotted and outputted as a table. For more detailed information on the methods and example use see Rohr, B., Silber, H., & Felderer, B. (2024). Comparing the Accuracy of Univariate, Bivariate, and Multivariate Estimates across Probability and Nonprobability Surveys with Population Benchmarks. Sociological Methodology <doi:10.1177/00811750241280963>.

r-electoral 0.1.4
Propagated dependencies: r-tibble@3.2.1 r-ineq@0.2-13 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=electoral
Licenses: GPL 3
Synopsis: Allocating Seats Methods and Party System Scores
Description:

Highest averages & largest remainders allocating seats methods and several party system scores. Implemented highest averages allocating seats methods are D'Hondt, Webster, Danish, Imperiali, Hill-Huntington, Dean, Modified Sainte-Lague, equal proportions and Adams. Implemented largest remainders allocating seats methods are Hare, Droop, Hangenbach-Bischoff, Imperial, modified Imperial and quotas & remainders. The main advantage of this package is that ties are always reported and not incorrectly allocated. Party system scores provided are competitiveness, concentration, effective number of parties, party nationalization score, party system nationalization score and volatility. References: Gallagher (1991) <doi:10.1016/0261-3794(91)90004-C>. Norris (2004, ISBN:0-521-82977-1). Laakso & Taagepera (1979) <https://escholarship.org/uc/item/703827nv>. Jones & Mainwaring (2003) <https://kellogg.nd.edu/sites/default/files/old_files/documents/304_0.pdf>. Pedersen (1979) <https://janda.org/c24/Readings/Pedersen/Pedersen.htm>. Golosov (2010) <doi:10.1177/1354068809339538>. Golosov (2014) <doi:10.1177/1354068814549342>.

r-proscorer 0.0.4
Propagated dependencies: r-proscorertools@0.0.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/raybaser/PROscorer
Licenses: Expat
Synopsis: Functions to Score Commonly-Used Patient-Reported Outcome (PRO) Measures and Other Psychometric Instruments
Description:

An extensible repository of accurate, up-to-date functions to score commonly used patient-reported outcome (PRO), quality of life (QOL), and other psychometric and psychological measures. PROscorer', together with the PROscorerTools package, is a system to facilitate the incorporation of PRO measures into research studies and clinical settings in a scientifically rigorous and reproducible manner. These packages and their vignettes are intended to help establish and promote best practices for scoring PRO and PRO-like measures in research. The PROscorer Instrument Descriptions vignette contains descriptions of each instrument scored by PROscorer', complete with references. These instrument descriptions are suitable for inclusion in formal study protocol documents, grant proposals, and manuscript Method sections. Each PROscorer function is composed of helper functions from the PROscorerTools package, and users are encouraged to contribute new functions to PROscorer'. More scoring functions are currently in development and will be added in future updates.

r-setartree 0.2.1
Propagated dependencies: r-generics@0.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/rakshitha123/setartree
Licenses: Expat
Synopsis: SETAR-Tree - A Novel and Accurate Tree Algorithm for Global Time Series Forecasting
Description:

The implementation of a forecasting-specific tree-based model that is in particular suitable for global time series forecasting, as proposed in Godahewa et al. (2022) <arXiv:2211.08661v1>. The model uses the concept of Self Exciting Threshold Autoregressive (SETAR) models to define the node splits and thus, the model is named SETAR-Tree. The SETAR-Tree uses some time-series-specific splitting and stopping procedures. It trains global pooled regression models in the leaves allowing the models to learn cross-series information. The depth of the tree is controlled by conducting a statistical linearity test as well as measuring the error reduction percentage at each node split. Thus, the SETAR-Tree requires minimal external hyperparameter tuning and provides competitive results under its default configuration. A forest is developed by extending the SETAR-Tree. The SETAR-Forest combines the forecasts provided by a collection of diverse SETAR-Trees during the forecasting process.

r-momentfit 1.0
Propagated dependencies: r-sandwich@3.1-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=momentfit
Licenses: GPL 2+
Synopsis: Methods of Moments
Description:

Several classes for moment-based models are defined. The classes are defined for moment conditions derived from a single equation or a system of equations. The conditions can also be expressed as functions or formulas. Several methods are also offered to facilitate the development of different estimation techniques. The methods that are currently provided are the Generalized method of moments (Hansen 1982; <doi:10.2307/1912775>), for single equations and systems of equation, and the Generalized Empirical Likelihood (Smith 1997; <doi:10.1111/j.0013-0133.1997.174.x>, Kitamura 1997; <doi:10.1214/aos/1069362388>, Newey and Smith 2004; <doi:10.1111/j.1468-0262.2004.00482.x>, and Anatolyev 2005 <doi:10.1111/j.1468-0262.2005.00601.x>). Some work is being done to add tools to deal with weak and/or many instruments. This includes K-Class estimators (Limited Information Maximum Likelihood and Fuller), Anderson and Rubin statistic test, etc.

r-ontophylo 1.1.3
Propagated dependencies: r-truncnorm@1.0-9 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringdist@0.9.15 r-rcolorbrewer@1.1-3 r-purrr@1.0.4 r-phytools@2.4-4 r-ontologyindex@2.12 r-magrittr@2.0.3 r-grimport@0.9-7 r-ggplot2@3.5.2 r-fancova@0.6-1 r-dplyr@1.1.4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/diegosasso/ontophylo
Licenses: Expat
Synopsis: Ontology-Informed Phylogenetic Comparative Analyses
Description:

This package provides new tools for analyzing discrete trait data integrating bio-ontologies and phylogenetics. It expands on the previous work of Tarasov et al. (2019) <doi:10.1093/isd/ixz009>. The PARAMO pipeline allows to reconstruct ancestral phenomes treating groups of morphological traits as a single complex character. The pipeline incorporates knowledge from ontologies during the amalgamation of individual character stochastic maps. Here we expand the current PARAMO functionality by adding new statistical methods for inferring evolutionary phenome dynamics using non-homogeneous Poisson process (NHPP). The new functionalities include: (1) reconstruction of evolutionary rate shifts of phenomes across lineages and time; (2) reconstruction of morphospace dynamics through time; and (3) estimation of rates of phenome evolution at different levels of anatomical hierarchy (e.g., entire body or specific regions only). The package also includes user-friendly tools for visualizing evolutionary rates of different anatomical regions using vector images of the organisms of interest.

r-pooltestr 0.2.0
Propagated dependencies: r-tibble@3.2.1 r-stringr@1.5.1 r-stanheaders@2.32.10 r-rstantools@2.4.0 r-rstan@2.32.7 r-rlang@1.1.6 r-rcppparallel@5.1.10 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-progress@1.2.3 r-lme4@1.1-37 r-dplyr@1.1.4 r-brms@2.22.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/AngusMcLure/PoolTestR
Licenses: GPL 3+
Synopsis: Prevalence and Regression for Pool-Tested (Group-Tested) Data
Description:

An easy-to-use tool for working with presence/absence tests on pooled or grouped samples. The primary application is for estimating prevalence of a marker in a population based on the results of tests on pooled specimens. This sampling method is often employed in surveillance of rare conditions in humans or animals (e.g. molecular xenomonitoring). The package was initially conceived as an R-based alternative to the molecular xenomonitoring software, PoolScreen <https://sites.uab.edu/statgenetics/software/>. However, it goes further, allowing for estimates of prevalence to be adjusted for hierarchical sampling frames, and perform flexible mixed-effect regression analyses (McLure et al. Environmental Modelling and Software. <DOI:10.1016/j.envsoft.2021.105158>). The package is currently in early stages, however more features are planned or in the works: e.g. adjustments for imperfect test specificity/sensitivity, functions for helping with optimal experimental design, and functions for spatial modelling.

r-daysupply 0.1.0
Propagated dependencies: r-rlang@1.1.6 r-magrittr@2.0.3 r-lme4@1.1-37 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=daySupply
Licenses: GPL 3+
Synopsis: Calculating Days' Supply and Daily Dose of Prescriptions
Description:

Allows clinicians and researchers to compute daily dose (and subsequently days supply) for prescription refills using the following methods: Fixed window, fixed tablet, defined daily dose (DDD), and Random Effects Warfarin Days Supply (REWarDS). Daily dose is the computed dose that the patient takes every day. For medications with fixed dosing (e.g. direct oral anticoagulants) this is known and does not need to be estimated. For medications with varying dose such as warfarin, however, the daily dose should be assumed or estimated to allow measurement of drug exposure. Daysâ supply is the number of days that patientsâ supply of medication will last after each prescription fill. Estimating daysâ supply is necessary to calculate drug exposure. The package computes daysâ supply and daily dose at both the prescription and patient levels. Results at the prescription level are denoted with â -Rx-â and those at patient level are denoted with â -Pt-â .

r-ghypernet 1.1.0
Propagated dependencies: r-texreg@1.39.4 r-rootsolve@1.8.2.4 r-rlang@1.1.6 r-reshape2@1.4.4 r-purrr@1.0.4 r-plyr@1.8.9 r-pbmcapply@1.5.1 r-numbers@0.8-5 r-extradistr@1.10.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://ghyper.net
Licenses: AGPL 3
Synopsis: Fit and Simulate Generalised Hypergeometric Ensembles of Graphs
Description:

This package provides functions for model fitting and selection of generalised hypergeometric ensembles of random graphs (gHypEG). To learn how to use it, check the vignettes for a quick tutorial. Please reference its use as Casiraghi, G., Nanumyan, V. (2019) <doi:10.5281/zenodo.2555300> together with those relevant references from the one listed below. The package is based on the research developed at the Chair of Systems Design, ETH Zurich. Casiraghi, G., Nanumyan, V., Scholtes, I., Schweitzer, F. (2016) <arXiv:1607.02441>. Casiraghi, G., Nanumyan, V., Scholtes, I., Schweitzer, F. (2017) <doi:10.1007/978-3-319-67256-4_11>. Casiraghi, G., (2017) <arXiv:1702.02048> Brandenberger, L., Casiraghi, G., Nanumyan, V., Schweitzer, F. (2019) <doi:10.1145/3341161.3342926> Casiraghi, G. (2019) <doi:10.1007/s41109-019-0241-1>. Casiraghi, G., Nanumyan, V. (2021) <doi:10.1038/s41598-021-92519-y>. Casiraghi, G. (2021) <doi:10.1088/2632-072X/ac0493>.

r-genproseq 1.12.0
Propagated dependencies: r-word2vec@0.4.0 r-ttgsea@1.16.0 r-tensorflow@2.20.0 r-reticulate@1.42.0 r-mclust@6.1.1 r-keras@2.16.0 r-deeppincs@1.16.0 r-catencoders@0.1.1
Channel: guix-bioc
Location: guix-bioc/packages/g.scm (guix-bioc packages g)
Home page: https://bioconductor.org/packages/GenProSeq
Licenses: Artistic License 2.0
Synopsis: Generating Protein Sequences with Deep Generative Models
Description:

Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.

r-arcensreg 3.0.2
Propagated dependencies: r-tmvtnorm@1.6 r-rdpack@2.6.4 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-qqplotr@0.0.7 r-numderiv@2016.8-1.1 r-mvtnorm@1.3-3 r-msm@1.8.2 r-matrixcalc@1.0-6 r-gridextra@2.3 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=ARCensReg
Licenses: GPL 2+
Synopsis: Fitting Univariate Censored Linear Regression Model with Autoregressive Errors
Description:

It fits a univariate left, right, or interval censored linear regression model with autoregressive errors, considering the normal or the Student-t distribution for the innovations. It provides estimates and standard errors of the parameters, predicts future observations, and supports missing values on the dependent variable. References used for this package: Schumacher, F. L., Lachos, V. H., & Dey, D. K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics, 45(4), 375-392 <doi:10.1002/cjs.11338>. Schumacher, F. L., Lachos, V. H., Vilca-Labra, F. E., & Castro, L. M. (2018). Influence diagnostics for censored regression models with autoregressive errors. Australian & New Zealand Journal of Statistics, 60(2), 209-229 <doi:10.1111/anzs.12229>. Valeriano, K. A., Schumacher, F. L., Galarza, C. E., & Matos, L. A. (2024). Censored autoregressive regression models with Studentâ t innovations. Canadian Journal of Statistics, 52(3), 804-828 <doi:10.1002/cjs.11804>.

r-ararredux 1.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=ArArRedux
Licenses: GPL 2
Synopsis: Rigorous Data Reduction and Error Propagation of Ar40 / Ar39 Data
Description:

Processes noble gas mass spectrometer data to determine the isotopic composition of argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated potassium-bearing minerals. Then uses these compositions to calculate precise and accurate geochronological ages for multiple samples as well as the covariances between them. Error propagation is done in matrix form, which jointly treats all samples and all isotopes simultaneously at every step of the data reduction process. Includes methods for regression of the time-resolved mass spectrometer signals to t=0 ('time zero') for both single- and multi-collector instruments, blank correction, mass fractionation correction, detector intercalibration, decay corrections, interference corrections, interpolation of the irradiation parameter between neutron fluence monitors, and (weighted mean) age calculation. All operations are performed on the logs of the ratios between the different argon isotopes so as to properly treat them as compositional data', sensu Aitchison [1986, The Statistics of Compositional Data, Chapman and Hall].

r-hydropeak 0.1.2
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hydropeak
Licenses: GPL 2
Synopsis: Detect and Characterize Sub-Daily Flow Fluctuations
Description:

An important environmental impact on running water ecosystems is caused by hydropeaking - the discontinuous release of turbine water because of peaks of energy demand. An event-based algorithm is implemented to detect flow fluctuations referring to increase events (IC) and decrease events (DC). For each event, a set of parameters related to the fluctuation intensity is calculated. The framework is introduced in Greimel et al. (2016) "A method to detect and characterize sub-daily flow fluctuations" <doi:10.1002/hyp.10773> and can be used to identify different fluctuation types according to the potential source: e.g., sub-daily flow fluctuations caused by hydropeaking, rainfall, or snow and glacier melt. This is a companion to the package hydroroute', which is used to detect and follow hydropower plant-specific hydropeaking waves at the sub-catchment scale and to describe how hydropeaking flow parameters change along the longitudinal flow path as proposed and validated in Greimel et al. (2022).

r-swpcindex 0.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SwPcIndex
Licenses: GPL 2+
Synopsis: Computation of Survey Weighted PC Based Composite Index
Description:

An index is created using a mathematical model that transforms multi-dimensional variables into a single value. These variables are often correlated, and while PCA-based indices can address the issue of multicollinearity, they typically do not account for survey weights, which can lead to inaccurate rankings of survey units such as households, districts, or states. To resolve this, the current package facilitates the development of a principal component analysis-based composite index by incorporating survey weights for each sample observation. This ensures the generation of a survey-weighted principal component-based normalized composite index. Additionally, the package provides a normalized principal component-based composite index and ranks the sample observations based on the values of the composite indices. For method details see, Skinner, C. J., Holmes, D. J. and Smith, T. M. F. (1986) <DOI:10.1080/01621459.1986.10478336>, Singh, D., Basak, P., Kumar, R. and Ahmad, T. (2023) <DOI:10.3389/fams.2023.1274530>.

r-spetestnp 1.1.0
Propagated dependencies: r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/HippolyteBoucher/SpeTestNP
Licenses: GPL 2
Synopsis: Non-Parametric Tests of Parametric Specifications
Description:

This package performs non-parametric tests of parametric specifications. Five tests are available. Specific bandwidth and kernel methods can be chosen along with many other options. Allows parallel computing to quickly compute p-values based on the bootstrap. Methods implemented in the package are H.J. Bierens (1982) <doi:10.1016/0304-4076(82)90105-1>, J.C. Escanciano (2006) <doi:10.1017/S0266466606060506>, P.L. Gozalo (1997) <doi:10.1016/S0304-4076(97)86571-2>, P. Lavergne and V. Patilea (2008) <doi:10.1016/j.jeconom.2007.08.014>, P. Lavergne and V. Patilea (2012) <doi:10.1198/jbes.2011.07152>, J.H. Stock and M.W. Watson (2006) <doi:10.1111/j.1538-4616.2007.00014.x>, C.F.J. Wu (1986) <doi:10.1214/aos/1176350142>, J. Yin, Z. Geng, R. Li, H. Wang (2010) <https://www.jstor.org/stable/24309002> and J.X. Zheng (1996) <doi:10.1016/0304-4076(95)01760-7>.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
Total results: 30177