Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Reads data collected from wearable acceleratometers as used in sleep and physical activity research. Currently supports file formats: binary data from GENEActiv <https://activinsights.com/>, .bin-format from GENEA devices (not for sale), and .cwa-format from Axivity <https://axivity.com>. Further, it has functions for reading text files with epoch level aggregates from Actical', Fitbit', Actiwatch', ActiGraph', and PhilipsHealthBand'. Primarily designed to complement R package GGIR <https://CRAN.R-project.org/package=GGIR>.
This package provides a quick and easy way of plotting the columns of two matrices or data frames against each other using ggplot2'. Although ggmatplot doesn't provide the same flexibility as ggplot2', it can be used as a workaround for having to wrangle wide format data into long format for plotting with ggplot2'.
Simulation tool to facilitate determination of required sample size to achieve category saturation for studies using multiple repertory grids in conjunction with content analysis.
Variable selection deviation (VSD) measures and instability tests for high-dimensional model selection methods such as LASSO, SCAD and MCP, etc., to decide whether the sparse patterns identified by those methods are reliable.
This package implements a novel method for privatizing network data using differential privacy. Provides functions for generating synthetic networks based on LSM (Latent Space Model), applying differential privacy to network latent positions to achieve overall network privatization, and evaluating the utility of privatized networks through various network statistics. The privatize and evaluate functions support both LSM and RDPG (Random Dot Product Graph). For generating RDPG networks, users are encouraged to use the randnet package <https://CRAN.R-project.org/package=randnet>. For more details, see the "proposed method" section of Liu, Bi, and Li (2025) <doi:10.48550/arXiv.2507.00402>.
This package provides functions for efficiently fitting linear models with spatially correlated errors by robust (Kuensch et al. (2011) <doi:10.3929/ethz-a-009900710>) and Gaussian (Harville (1977) <doi:10.1080/01621459.1977.10480998>) (Restricted) Maximum Likelihood and for computing robust and customary point and block external-drift Kriging predictions (Cressie (1993) <doi:10.1002/9781119115151>), along with utility functions for variogram modelling in ad hoc geostatistical analyses, model building, model evaluation by cross-validation, (conditional) simulation of Gaussian processes (Davies and Bryant (2013) <doi:10.18637/jss.v055.i09>), unbiased back-transformation of Kriging predictions of log-transformed data (Cressie (2006) <doi:10.1007/s11004-005-9022-8>).
Dependency-free, ultra fast calculation of geodesic distances. Includes the reference nanometre-accuracy geodesic distances of Karney (2013) <doi:10.1007/s00190-012-0578-z>, as used by the sf package, as well as Haversine and Vincenty distances. Default distance measure is the "Mapbox cheap ruler" which is generally more accurate than Haversine or Vincenty for distances out to a few hundred kilometres, and is considerably faster. The main function accepts one or two inputs in almost any generic rectangular form, and returns either matrices of pairwise distances, or vectors of sequential distances.
This package provides a ggplot2 extension that enables visualization of IP (Internet Protocol) addresses and networks. The address space is mapped onto the Cartesian coordinate system using a space-filling curve. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces.
This package performs end-to-end analysis of gene clustersâ such as photosynthesis, carbon/nitrogen/sulfur cycling, carotenoid, antibiotic, or viral marker genes (e.g., capsid, polymerase, integrase)â from genomes and metagenomes. It parses Basic Local Alignment Search Tool (BLAST) results in tab-delimited format produced by tools like NCBI BLAST+ and Diamond BLASTp, filters Open Reading Frames (ORFs) by length, detects contiguous clusters of reference genes, optionally extracts genomic coordinates, merges functional annotations, and generates publication-ready arrow plots. The package works seamlessly with or without the coding sequences input and skips plotting when no functional groups are found. For more details see Li et al. (2023) <doi:10.1038/s41467-023-42193-7>.
This package provides facilities to read, write and validate geographic metadata defined with ISO TC211 / OGC ISO geographic information metadata standards, and encoded using the ISO 19139 and ISO 19115-3 (XML) standard technical specifications. This includes ISO 19110 (Feature cataloguing), 19115 (dataset metadata), 19119 (service metadata) and 19136 (GML). Other interoperable schemas from the OGC are progressively supported as well, such as the Sensor Web Enablement (SWE) Common Data Model, the OGC GML Coverage Implementation Schema (GMLCOV), or the OGC GML Referenceable Grid (GMLRGRID).
This package provides a Chernoff face geom for ggplot2'. Maps multivariate data to human-like faces. Inspired by Chernoff (1973) <doi:10.1080/01621459.1973.10482434>.
Interactively applies the Guidelines for Reporting About Network Data (GRAND) to an igraph object, and generates a uniform narrative or tabular description of the object.
The correlations and linkage disequilibrium between tests can vary as a function of minor allele frequency thresholds used to filter variants, and also varies with different choices of test statistic for region-based tests. Appropriate genome-wide significance thresholds can be estimated empirically through permutation on only a small proportion of the whole genome.
This package provides a Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation. Jonathan Boss, Jyotishka Datta, Xin Wang, Sung Kyun Park, Jian Kang, Bhramar Mukherjee (2021) <arXiv:2102.10670>.
Execute Latent Class Analysis (LCA) and Latent Class Regression (LCR) by using Generalized Structured Component Analysis (GSCA). This is explained in Ryoo, Park, and Kim (2019) <doi:10.1007/s41237-019-00084-6>. It estimates the parameters of latent class prevalence and item response probability in LCA with a single line comment. It also provides graphs of item response probabilities. In addition, the package enables to estimate the relationship between the prevalence and covariates.
Retrieving regional plant checklists, species traits and distributions, and environmental data from the Global Inventory of Floras and Traits (GIFT). More information about the GIFT database can be found at <https://gift.uni-goettingen.de/about> and the map of available floras can be visualized at <https://gift.uni-goettingen.de/map>. The API and associated queries can be accessed according the following scheme: <https://gift.uni-goettingen.de/api/extended/index2.0.php?query=env_raster>.
Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with gips approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>. Documentation about gips is provided via its website at <https://przechoj.github.io/gips/> and the paper by Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).
Mark your interesting genes on plot and support more parameters to handle your own gene set enrichment analysis plot.
Dynamically retrieve data from the web to render HTML tables on inspection in R Markdown HTML documents.
Fit spatio-temporal models within a (double) generalized linear modelling framework. The package includes functions for estimation, simulation and inference.
Readable, complete and pretty graphs for correspondence analysis made with FactoMineR'. They can be rendered as interactive HTML plots, showing useful informations at mouse hover. The interest is not mainly visual but statistical: it helps the reader to keep in mind the data contained in the cross-table or Burt table while reading the correspondence analysis, thus preventing over-interpretation. Most graphs are made with ggplot2', which means that you can use the + syntax to manually add as many graphical pieces you want, or change theme elements. 3D graphs are made with plotly'.
Graphical approach provides a useful framework for multiplicity adjustment in clinical trials with multiple endpoints. This package includes statistical methods to optimize sample size over initial weight and transition probability in a graphical approach under a common setting, which is to use marginal power for each endpoint in a trial design. See Zhang, F. and Gou, J. (2023). Sample size optimization for clinical trials using graphical approaches for multiplicity adjustment, Technical Report.
This package provides a variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.
Estimation of covariance matrices as solutions of continuous time Lyapunov equations. Sparse coefficient matrix and diagonal noise are estimated with a proximal gradient method for an l1-penalized loss minimization problem. Varando G, Hansen NR (2020) <arXiv:2005.10483>.