_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-flamingos 0.1.0
Propagated dependencies: r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/fchamroukhi/FLaMingos
Licenses: GPL 3+
Synopsis: Functional Latent Data Models for Clustering Heterogeneous Curves ('FLaMingos')
Description:

This package provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in Matlab by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011). <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>.

r-metarange 1.1.4
Propagated dependencies: r-terra@1.8-50 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-r6@2.6.1 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://metaRange.github.io/metaRange/
Licenses: GPL 3
Synopsis: Framework to Build Mechanistic and Metabolic Constrained Species Distribution Models
Description:

Build spatially and temporally explicit process-based species distribution models, that can include an arbitrary number of environmental factors, species and processes including metabolic constraints and species interactions. The focus of the package is simulating populations of one or multiple species in a grid-based landscape and studying the meta-population dynamics and emergent patterns that arise from the interaction of species under complex environmental conditions. It provides functions for common ecological processes such as negative exponential, kernel-based dispersal (see Nathan et al. (2012) <doi:10.1093/acprof:oso/9780199608898.003.0015>), calculation of the environmental suitability based on cardinal values ( Yin et al. (1995) <doi:10.1016/0168-1923(95)02236-Q>, simplified by Yan and Hunt (1999) <doi:10.1006/anbo.1999.0955> see eq: 4), reproduction in form of an Ricker model (see Ricker (1954) <doi:10.1139/f54-039> and Cabral and Schurr (2010) <doi:10.1111/j.1466-8238.2009.00492.x>), as well as metabolic scaling based on the metabolic theory of ecology (see Brown et al. (2004) <doi:10.1890/03-9000> and Brown, Sibly and Kodric-Brown (2012) <doi:10.1002/9781119968535.ch>).

r-subscreen 4.0.1
Propagated dependencies: r-stringr@1.5.1 r-shinywidgets@0.9.0 r-shinyjs@2.1.0 r-shiny@1.10.0 r-rlang@1.1.6 r-ranger@0.17.0 r-plyr@1.8.9 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-dt@0.33 r-dplyr@1.1.4 r-data-table@1.17.4 r-colourpicker@1.3.0 r-bsplus@0.1.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=subscreen
Licenses: GPL 3
Synopsis: Systematic Screening of Study Data for Subgroup Effects
Description:

Identifying outcome relevant subgroups has now become as simple as possible! The formerly lengthy and tedious search for the needle in a haystack will be replaced by a single, comprehensive and coherent presentation. The central result of a subgroup screening is a diagram in which each single dot stands for a subgroup. The diagram may show thousands of them. The position of the dot in the diagram is determined by the sample size of the subgroup and the statistical measure of the treatment effect in that subgroup. The sample size is shown on the horizontal axis while the treatment effect is displayed on the vertical axis. Furthermore, the diagram shows the line of no effect and the overall study results. For small subgroups, which are found on the left side of the plot, larger random deviations from the mean study effect are expected, while for larger subgroups only small deviations from the study mean can be expected to be chance findings. So for a study with no conspicuous subgroup effects, the dots in the figure are expected to form a kind of funnel. Any deviations from this funnel shape hint to conspicuous subgroups.

r-copulasim 0.0.1
Propagated dependencies: r-tibble@3.2.1 r-rlang@1.1.6 r-mvtnorm@1.3-3 r-magrittr@2.0.3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/psyen0824/copulaSim
Licenses: Expat
Synopsis: Virtual Patient Simulation by Copula Invariance Property
Description:

To optimize clinical trial designs and data analysis methods consistently through trial simulation, we need to simulate multivariate mixed-type virtual patient data independent of designs and analysis methods under evaluation. To make the outcome of optimization more realistic, relevant empirical patient level data should be utilized when itâ s available. However, a few problems arise in simulating trials based on small empirical data, where the underlying marginal distributions and their dependence structure cannot be understood or verified thoroughly due to the limited sample size. To resolve this issue, we use the copula invariance property, which can generate the joint distribution without making a strong parametric assumption. The function copula.sim can generate virtual patient data with optional data validation methods that are based on energy distance and ball divergence measurement. The function compare.copula.sim can conduct comparison of marginal mean and covariance of simulated data. To simulate patient-level data from a hypothetical treatment arm that would perform differently from the observed data, the function new.arm.copula.sim can be used to generate new multivariate data with the same dependence structure of the original data but with a shifted mean vector.

r-tidycdisc 0.2.1
Propagated dependencies: r-tippy@0.1.0 r-timevis@2.1.0 r-tidyr@1.3.1 r-survival@3.8-3 r-stringr@1.5.1 r-sjlabelled@1.2.0 r-shinywidgets@0.9.0 r-shinyjs@2.1.0 r-shiny@1.10.0 r-rmarkdown@2.29 r-rlang@1.1.6 r-purrr@1.0.4 r-plotly@4.10.4 r-ideafilter@0.2.1 r-haven@2.5.5 r-gt@1.1.0 r-golem@0.5.1 r-glue@1.8.0 r-ggplot2@3.5.2 r-ggcorrplot@0.1.4.1 r-ggally@2.2.1 r-dt@0.33 r-dplyr@1.1.4 r-config@0.3.2 r-cicerone@1.0.4
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/Biogen-Inc/tidyCDISC/
Licenses: AGPL 3+
Synopsis: Quick Table Generation & Exploratory Analyses on ADaM-Ish Datasets
Description:

This package provides users a quick exploratory dive into common visualizations without writing a single line of code given the users data follows the Analysis Data Model (ADaM) standards put forth by the Clinical Data Interchange Standards Consortium (CDISC) <https://www.cdisc.org>. Prominent modules/ features of the application are the Table Generator, Population Explorer, and the Individual Explorer. The Table Generator allows users to drag and drop variables and desired statistics (frequencies, means, ANOVA, t-test, and other summary statistics) into bins that automagically create stunning tables with validated information. The Population Explorer offers various plots to visualize general trends in the population from various vantage points. Plot modules currently include scatter plot, spaghetti plot, box plot, histogram, means plot, and bar plot. Each plot type allows the user to plot uploaded variables against one another, and dissect the population by filtering out certain subjects. Last, the Individual Explorer establishes a cohesive patient narrative, allowing the user to interact with patient metrics (params) by visit or plotting important patient events on a timeline. All modules allow for concise filtering & downloading bulk outputs into html or pdf formats to save for later.

r-paleotree 3.4.7
Propagated dependencies: r-rcurl@1.98-1.17 r-png@0.1-8 r-phytools@2.4-4 r-phangorn@2.12.1 r-jsonlite@2.0.0 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/dwbapst/paleotree
Licenses: CC0
Synopsis: Paleontological and Phylogenetic Analyses of Evolution
Description:

This package provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.

r-evenbreak 1.0
Propagated dependencies: r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=evenBreak
Licenses: GPL 2+
Synopsis: Posteriori Probs of Suits Breaking Evenly Across Four Hands
Description:

We quantitatively evaluated the assertion that says if one suit is found to be evenly distributed among the 4 players, the rest of the suits are more likely to be evenly distributed. Our mathematical analyses show that, if one suit is found to be evenly distributed, then a second suit has a slightly elevated probability (ranging between 10% to 15%) of being evenly distributed. If two suits are found to be evenly distributed, then a third suit has a substantially elevated probability (ranging between 30% to 50%) of being evenly distributed.This package refers to methods and authentic data from Ely Culbertson <https://www.bridgebum.com/law_of_symmetry.php>, Gregory Stoll <https://gregstoll.com/~gregstoll/bridge/math.html>, and details of performing the probability calculations from Jeremy L. Martin <https://jlmartin.ku.edu/~jlmartin/bridge/basics.pdf>, Emile Borel and Andre Cheron (1954) "The Mathematical Theory of Bridge",Antonio Vivaldi and Gianni Barracho (2001, ISBN:0 7134 8663 5) "Probabilities and Alternatives in Bridge", Ken Monzingo (2005) "Hand and Suit Patterns" <http://web2.acbl.org/documentlibrary/teachers/celebritylessons/handpatternsrevised.pdf>Ken Monzingo (2005) "Hand and Suit Patterns" <http://web2.acbl.org/documentlibrary/teachers/celebritylessons/handpatternsrevised.pdf>.

r-git2rdata 0.5.0
Propagated dependencies: r-yaml@2.3.10 r-git2r@0.36.2 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://ropensci.github.io/git2rdata/
Licenses: GPL 3
Synopsis: Store and Retrieve Data.frames in a Git Repository
Description:

The git2rdata package is an R package for writing and reading dataframes as plain text files. A metadata file stores important information. 1) Storing metadata allows to maintain the classes of variables. By default, git2rdata optimizes the data for file storage. The optimization is most effective on data containing factors. The optimization makes the data less human readable. The user can turn this off when they prefer a human readable format over smaller files. Details on the implementation are available in vignette("plain_text", package = "git2rdata"). 2) Storing metadata also allows smaller row based diffs between two consecutive commits. This is a useful feature when storing data as plain text files under version control. Details on this part of the implementation are available in vignette("version_control", package = "git2rdata"). Although we envisioned git2rdata with a git workflow in mind, you can use it in combination with other version control systems like subversion or mercurial. 3) git2rdata is a useful tool in a reproducible and traceable workflow. vignette("workflow", package = "git2rdata") gives a toy example. 4) vignette("efficiency", package = "git2rdata") provides some insight into the efficiency of file storage, git repository size and speed for writing and reading.

r-assetcorr 1.0.4
Propagated dependencies: r-vinecopula@2.6.1 r-rdpack@2.6.4 r-qpdf@1.3.5 r-numderiv@2016.8-1.1 r-mvtnorm@1.3-3 r-mvquad@1.0-8 r-knitr@1.50 r-ggplot2@3.5.2 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=AssetCorr
Licenses: GPL 3
Synopsis: Estimating Asset Correlations from Default Data
Description:

This package provides functions for the estimation of intra- and inter-cohort correlations in the Vasicek credit portfolio model. For intra-cohort correlations, the package covers the two method of moments estimators of Gordy (2000) <doi:10.1016/S0378-4266(99)00054-0>, the method of moments estimator of Lucas (1995) <https://jfi.pm-research.com/content/4/4/76> and a Binomial approximation extension of this approach. Moreover, the maximum likelihood estimators of Gordy and Heitfield (2010) <http://elsa.berkeley.edu/~mcfadden/e242_f03/heitfield.pdf> and Duellmann and Gehde-Trapp (2004) <http://hdl.handle.net/10419/19729> are implemented. For inter-cohort correlations, the method of moments estimator of Bluhm and Overbeck (2003) <doi:10.1007/978-3-642-59365-9_2>/Bams et al. (2016) <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2676595> is provided and the maximum likelihood estimators comprise the approaches of Gordy and Heitfield (2010)/Kalkbrener and Onwunta (2010) <ISBN: 978-1906348250> and Pfeuffer et al. (2020). Bootstrap and Jackknife procedures for bias correction are included as well as the method of moments estimator of Frei and Wunsch (2018) <doi:10.21314/JCR.2017.231> for auto-correlated time series.

r-gpumatrix 1.0.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GPUmatrix
Licenses: Artistic License 2.0
Synopsis: Basic Linear Algebra with GPU
Description:

GPUs are great resources for data analysis, especially in statistics and linear algebra. Unfortunately, very few packages connect R to the GPU, and none of them are transparent enough to run the computations on the GPU without substantial changes to the code. The maintenance of these packages is cumbersome: several of the earlier attempts have been removed from their respective repositories. It would be desirable to have a properly maintained R package that takes advantage of the GPU with minimal changes to the existing code. We have developed the GPUmatrix package (available on CRAN). GPUmatrix mimics the behavior of the Matrix package and extends R to use the GPU for computations. It includes single(FP32) and double(FP64) precision data types, and provides support for sparse matrices. It is easy to learn, and requires very few code changes to perform the operations on the GPU. GPUmatrix relies on either the Torch or Tensorflow R packages to perform the GPU operations. We have demonstrated its usefulness for several statistical applications and machine learning applications: non-negative matrix factorization, logistic regression and general linear models. We have also included a comparison of GPU and CPU performance on different matrix operations.

r-opticskxi 1.2.1
Propagated dependencies: r-rlang@1.1.6 r-matrix@1.7-3 r-magrittr@2.0.3 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://gitlab.com/thomaschln/opticskxi
Licenses: GPL 3
Synopsis: OPTICS K-Xi Density-Based Clustering
Description:

Density-based clustering methods are well adapted to the clustering of high-dimensional data and enable the discovery of core groups of various shapes despite large amounts of noise. This package provides a novel density-based cluster extraction method, OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics to investigate datasets with unknown number of clusters. The vignette first introduces density-based algorithms with simulated datasets, then presents and evaluates the k-Xi cluster extraction method. Finally, the models comparison framework is described and experimented on 2 genetic datasets to identify groups and their discriminating features. The k-Xi algorithm is a novel OPTICS cluster extraction method that specifies directly the number of clusters and does not require fine-tuning of the steepness parameter as the OPTICS Xi method. Combined with a framework that compares models with varying parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown number of clusters. Results on summarized genetic data of 1,200 patients are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>. A short video tutorial can be found at <https://www.youtube.com/watch?v=P2XAjqI5Lc4/>.

r-fitdistcp 0.1.1
Propagated dependencies: r-rust@1.4.3 r-pracma@2.4.4 r-mev@2.0 r-gnorm@1.0.0 r-fextremes@4032.84 r-fdrtool@1.2.18 r-extradistr@1.10.0 r-actuar@3.3-5
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://fitdistcp.info
Licenses: Expat
Synopsis: Distribution Fitting with Calibrating Priors for Commonly Used Distributions
Description:

Generates predictive distributions based on calibrating priors for various commonly used statistical models, including models with predictors. Routines for densities, probabilities, quantiles, random deviates and the parameter posterior are provided. The predictions are generated from the Bayesian prediction integral, with priors chosen to give good reliability (also known as calibration). For homogeneous models, the prior is set to the right Haar prior, giving predictions which are exactly reliable. As a result, in repeated testing, the frequencies of out-of-sample outcomes and the probabilities from the predictions agree. For other models, the prior is chosen to give good reliability. Where possible, the Bayesian prediction integral is solved exactly. Where exact solutions are not possible, the Bayesian prediction integral is solved using the Datta-Mukerjee-Ghosh-Sweeting (DMGS) asymptotic expansion. Optionally, the prediction integral can also be solved using posterior samples generated using Paul Northrop's ratio of uniforms sampling package ('rust'). Results are also generated based on maximum likelihood, for comparison purposes. Various model selection diagnostics and testing routines are included. Based on "Reducing reliability bias in assessments of extreme weather risk using calibrating priors", Jewson, S., Sweeting, T. and Jewson, L. (2024); <doi:10.5194/ascmo-11-1-2025>.

r-wrightmap 1.4
Propagated dependencies: r-rcolorbrewer@1.1-3
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=WrightMap
Licenses: FreeBSD
Synopsis: IRT Item-Person Map with 'ConQuest' Integration
Description:

This package provides a powerful yet simple graphical tool available in the field of psychometrics is the Wright Map (also known as item maps or item-person maps), which presents the location of both respondents and items on the same scale. Wright Maps are commonly used to present the results of dichotomous or polytomous item response models. The WrightMap package provides functions to create these plots from item parameters and person estimates stored as R objects. Although the package can be used in conjunction with any software used to estimate the IRT model (e.g. TAM', mirt', eRm or IRToys in R', or Stata', Mplus', etc.), WrightMap features special integration with ConQuest to facilitate reading and plotting its output directly.The wrightMap function creates Wright Maps based on person estimates and item parameters produced by an item response analysis. The CQmodel function reads output files created using ConQuest software and creates a set of data frames for easy data manipulation, bundled in a CQmodel object. The wrightMap function can take a CQmodel object as input or it can be used to create Wright Maps directly from data frames of person and item parameters.

r-workloopr 1.1.4
Propagated dependencies: r-signal@1.8-1 r-pracma@2.4.4
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://docs.ropensci.org/workloopR/
Licenses: GPL 3+
Synopsis: Analysis of Work Loops and Other Data from Muscle Physiology Experiments
Description:

This package provides functions for the import, transformation, and analysis of data from muscle physiology experiments. The work loop technique is used to evaluate the mechanical work and power output of muscle. Josephson (1985) <doi:10.1242/jeb.114.1.493> modernized the technique for application in comparative biomechanics. Although our initial motivation was to provide functions to analyze work loop experiment data, as we developed the package we incorporated the ability to analyze data from experiments that are often complementary to work loops. There are currently three supported experiment types: work loops, simple twitches, and tetanus trials. Data can be imported directly from .ddf files or via an object constructor function. Through either method, data can then be cleaned or transformed via methods typically used in studies of muscle physiology. Data can then be analyzed to determine the timing and magnitude of force development and relaxation (for isometric trials) or the magnitude of work, net power, and instantaneous power among other things (for work loops). Although we do not provide plotting functions, all resultant objects are designed to be friendly to visualization via either base-R plotting or tidyverse functions. This package has been peer-reviewed by rOpenSci (v. 1.1.0).

r-deeppincs 1.16.0
Propagated dependencies: r-webchem@1.3.0 r-ttgsea@1.16.0 r-tokenizers@0.3.0 r-tensorflow@2.20.0 r-stringdist@0.9.15 r-reticulate@1.42.0 r-rcdk@3.8.1 r-purrr@1.0.4 r-prroc@1.4 r-matlab@1.0.4.1 r-keras@2.16.0 r-catencoders@0.1.1
Channel: guix-bioc
Location: guix-bioc/packages/d.scm (guix-bioc packages d)
Home page: https://bioconductor.org/packages/DeepPINCS
Licenses: Artistic License 2.0
Synopsis: Protein Interactions and Networks with Compounds based on Sequences using Deep Learning
Description:

The identification of novel compound-protein interaction (CPI) is important in drug discovery. Revealing unknown compound-protein interactions is useful to design a new drug for a target protein by screening candidate compounds. The accurate CPI prediction assists in effective drug discovery process. To identify potential CPI effectively, prediction methods based on machine learning and deep learning have been developed. Data for sequences are provided as discrete symbolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-entry system) strings and proteins are sequences in which the characters are amino acids. The outcome is defined as a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them. In this package, a deep-learning based model that takes only sequence information of both compounds and proteins as input and the outcome as output is used to predict CPI. The model is implemented by using compound and protein encoders with useful features. The CPI model also supports other modeling tasks, including protein-protein interaction (PPI), chemical-chemical interaction (CCI), or single compounds and proteins. Although the model is designed for proteins, DNA and RNA can be used if they are represented as sequences.

r-countstar 1.0.2
Propagated dependencies: r-truncdist@1.0-2 r-truncatednormal@2.3 r-splines2@0.5.4 r-spikeslabgam@1.1-20 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-randomforest@4.7-1.2 r-matrix@1.7-3 r-kfas@1.6.0 r-gbm@2.2.2 r-fastgp@1.2 r-dbarts@0.9-32 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=countSTAR
Licenses: GPL 2+
Synopsis: Flexible Modeling of Count Data
Description:

For Bayesian and classical inference and prediction with count-valued data, Simultaneous Transformation and Rounding (STAR) Models provide a flexible, interpretable, and easy-to-use approach. STAR models the observed count data using a rounded continuous data model and incorporates a transformation for greater flexibility. Implicitly, STAR formalizes the commonly-applied yet incoherent procedure of (i) transforming count-valued data and subsequently (ii) modeling the transformed data using Gaussian models. STAR is well-defined for count-valued data, which is reflected in predictive accuracy, and is designed to account for zero-inflation, bounded or censored data, and over- or underdispersion. Importantly, STAR is easy to combine with existing MCMC or point estimation methods for continuous data, which allows seamless adaptation of continuous data models (such as linear regressions, additive models, BART, random forests, and gradient boosting machines) for count-valued data. The package also includes several methods for modeling count time series data, namely via warped Dynamic Linear Models. For more details and background on these methodologies, see the works of Kowal and Canale (2020) <doi:10.1214/20-EJS1707>, Kowal and Wu (2022) <doi:10.1111/biom.13617>, King and Kowal (2022) <arXiv:2110.14790>, and Kowal and Wu (2023) <arXiv:2110.12316>.

r-seasonder 0.2.8
Propagated dependencies: r-zoo@1.8-14 r-yaml@2.3.10 r-whisker@0.4.1 r-uuid@1.2-1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-slider@0.3.2 r-rlang@1.1.6 r-purrr@1.0.4 r-pracma@2.4.4 r-magrittr@2.0.3 r-lubridate@1.9.4 r-glue@1.8.0 r-ggplot2@3.5.2 r-geosphere@1.5-20 r-dplyr@1.1.4 r-data-table@1.17.4 r-constants@2022.0 r-bitops@1.0-9 r-bit64@4.6.0-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/GOFUVI/SeaSondeR
Licenses: GPL 3+
Synopsis: Radial Metrics from SeaSonde HF-Radar Data
Description:

Read CODAR's SeaSonde High-Frequency Radar spectra files, compute radial metrics, and generate plots for spectra and antenna pattern data. Implementation is based in technical manuals, publications and patents, please refer to the following documents for more information: Barrick and Lipa (1999) <https://codar.com/images/about/patents/05990834.PDF>; CODAR Ocean Sensors (2002) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf>; Lipa et al. (2006) <doi:10.1109/joe.2006.886104>; Paolo et al. (2007) <doi:10.1109/oceans.2007.4449265>; CODAR Ocean Sensors (2009a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf>; CODAR Ocean Sensors (2009b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced.pdf>; CODAR Ocean Sensors (2016a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf>; CODAR Ocean Sensors (2016b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf>; CODAR Ocean Sensors (2016c) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf>; Bushnell and Worthington (2022) <doi:10.25923/4c5x-g538>.

r-jackstraw 1.3.17
Propagated dependencies: r-rsvd@1.0.5 r-irlba@2.3.5.1 r-genio@1.1.2 r-corpcor@1.6.10 r-clusterr@1.3.3 r-cluster@2.1.8.1 r-bedmatrix@2.0.4
Channel: guix-cran
Location: guix-cran/packages/j.scm (guix-cran packages j)
Home page: https://cran.r-project.org/package=jackstraw
Licenses: GPL 2
Synopsis: Statistical Inference for Unsupervised Learning
Description:

Test for association between the observed data and their estimated latent variables. The jackstraw package provides a resampling strategy and testing scheme to estimate statistical significance of association between the observed data and their latent variables. Depending on the data type and the analysis aim, the latent variables may be estimated by principal component analysis (PCA), factor analysis (FA), K-means clustering, and related unsupervised learning algorithms. The jackstraw methods learn over-fitting characteristics inherent in this circular analysis, where the observed data are used to estimate the latent variables and used again to test against that estimated latent variables. When latent variables are estimated by PCA, the jackstraw enables statistical testing for association between observed variables and latent variables, as estimated by low-dimensional principal components (PCs). This essentially leads to identifying variables that are significantly associated with PCs. Similarly, unsupervised clustering, such as K-means clustering, partition around medoids (PAM), and others, finds coherent groups in high-dimensional data. The jackstraw estimates statistical significance of cluster membership, by testing association between data and cluster centers. Clustering membership can be improved by using the resulting jackstraw p-values and posterior inclusion probabilities (PIPs), with an application to unsupervised evaluation of cell identities in single cell RNA-seq (scRNA-seq).

r-survtrunc 0.2.0
Propagated dependencies: r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SurvTrunc
Licenses: GPL 2
Synopsis: Analysis of Doubly Truncated Data
Description:

Package performs Cox regression and survival distribution function estimation when the survival times are subject to double truncation. In case that the survival and truncation times are quasi-independent, the estimation procedure for each method involves inverse probability weighting, where the weights correspond to the inverse of the selection probabilities and are estimated using the survival times and truncation times only. A test for checking this independence assumption is also included in this package. The functions available in this package for Cox regression, survival distribution function estimation, and testing independence under double truncation are based on the following methods, respectively: Rennert and Xie (2018) <doi:10.1111/biom.12809>, Shen (2010) <doi:10.1007/s10463-008-0192-2>, Martin and Betensky (2005) <doi:10.1198/016214504000001538>. When the survival times are dependent on at least one of the truncation times, an EM algorithm is employed to obtain point estimates for the regression coefficients. The standard errors are calculated using the bootstrap method. See Rennert and Xie (2022) <doi:10.1111/biom.13451>. Both the independent and dependent cases assume no censoring is present in the data. Please contact Lior Rennert <liorr@clemson.edu> for questions regarding function coxDT and Yidan Shi <yidan.shi@pennmedicine.upenn.edu> for questions regarding function coxDTdep.

r-eq5dsuite 1.0.1
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-scales@1.4.0 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-rappdirs@0.3.3 r-moments@0.14.1 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=eq5dsuite
Licenses: GPL 2+
Synopsis: Handling and Analysing EQ-5d Data
Description:

The EQ-5D is a widely-used standarized instrument for measuring Health Related Quality Of Life (HRQOL), developed by the EuroQol group <https://euroqol.org/>. It assesses five dimensions; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, using either a three-level (EQ-5D-3L) or five-level (EQ-5D-5L) scale. Scores from these dimensions are commonly converted into a single utility index using country-specific value sets, which are critical in clinical and economic evaluations of healthcare and in population health surveys. The eq5dsuite package enables users to calculate utility index values for the EQ-5D instruments, including crosswalk utilities using the original crosswalk developed by van Hout et al. (2012) <doi:10.1016/j.jval.2012.02.008> (mapping EQ-5D-5L responses to EQ-5D-3L index values), or the recently developed reverse crosswalk by van Hout et al. (2021) <doi:10.1016/j.jval.2021.03.009> (mapping EQ-5D-3L responses to EQ-5D-5L index values). Users are allowed to add and/or remove user-defined value sets. Additionally, the package provides tools to analyze EQ-5D data according to the recommended guidelines outlined in "Methods for Analyzing and Reporting EQ-5D data" by Devlin et al. (2020) <doi:10.1007/978-3-030-47622-9>.

r-treesimgm 2.5
Propagated dependencies: r-treesim@2.4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=TreeSimGM
Licenses: GPL 2
Synopsis: Simulating Phylogenetic Trees under General Bellman Harris and Lineage Shift Model
Description:

This package provides a flexible simulation tool for phylogenetic trees under a general model for speciation and extinction. Trees with a user-specified number of extant tips, or a user-specified stem age are simulated. It is possible to assume any probability distribution for the waiting time until speciation and extinction. Furthermore, the waiting times to speciation / extinction may be scaled in different parts of the tree, meaning we can simulate trees with clade-dependent diversification processes. At a speciation event, one species splits into two. We allow for two different modes at these splits: (i) symmetric, where for every speciation event new waiting times until speciation and extinction are drawn for both daughter lineages; and (ii) asymmetric, where a speciation event results in one species with new waiting times, and another that carries the extinction time and age of its ancestor. The symmetric mode can be seen as an vicariant or allopatric process where divided populations suffer equal evolutionary forces while the asymmetric mode could be seen as a peripatric speciation where a mother lineage continues to exist. Reference: O. Hagen and T. Stadler (2017). TreeSimGM: Simulating phylogenetic trees under general Bellman Harris models with lineage-specific shifts of speciation and extinction in R. Methods in Ecology and Evolution. <doi:10.1111/2041-210X.12917>.

r-testassay 0.1.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=testassay
Licenses: Expat
Synopsis: Hypothesis Testing Framework for Validating an Assay for Precision
Description:

This package provides a common way of validating a biological assay for is through a procedure, where m levels of an analyte are measured with n replicates at each level, and if all m estimates of the coefficient of variation (CV) are less than some prespecified level, then the assay is declared validated for precision within the range of the m analyte levels. Two limitations of this procedure are: there is no clear statistical statement of precision upon passing, and it is unclear how to modify the procedure for assays with constant standard deviation. We provide tools to convert such a procedure into a set of m hypothesis tests. This reframing motivates the m:n:q procedure, which upon completion delivers a 100q% upper confidence limit on the CV. Additionally, for a post-validation assay output of y, the method gives an ``effective standard deviation interval of log(y) plus or minus r, which is a 68% confidence interval on log(mu), where mu is the expected value of the assay output for that sample. Further, the m:n:q procedure can be straightforwardly applied to constant standard deviation assays. We illustrate these tools by applying them to a growth inhibition assay. This is an implementation of the methods described in Fay, Sachs, and Miura (2018) <doi:10.1002/sim.7528>.

r-forestfit 2.4.3
Propagated dependencies: r-pracma@2.4.4 r-ars@0.8
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=ForestFit
Licenses: GPL 2+
Synopsis: Statistical Modelling for Plant Size Distributions
Description:

Developed for the following tasks. 1 ) Computing the probability density function, cumulative distribution function, random generation, and estimating the parameters of the eleven mixture models. 2 ) Point estimation of the parameters of two - parameter Weibull distribution using twelve methods and three - parameter Weibull distribution using nine methods. 3 ) The Bayesian inference for the three - parameter Weibull distribution. 4 ) Estimating parameters of the three - parameter Birnbaum - Saunders, generalized exponential, and Weibull distributions fitted to grouped data using three methods including approximated maximum likelihood, expectation maximization, and maximum likelihood. 5 ) Estimating the parameters of the gamma, log-normal, and Weibull mixture models fitted to the grouped data through the EM algorithm, 6 ) Estimating parameters of the nonlinear height curve fitted to the height - diameter observation, 7 ) Estimating parameters, computing probability density function, cumulative distribution function, and generating realizations from gamma shape mixture model introduced by Venturini et al. (2008) <doi:10.1214/07-AOAS156> , 8 ) The Bayesian inference, computing probability density function, cumulative distribution function, and generating realizations from univariate and bivariate Johnson SB distribution, 9 ) Robust multiple linear regression analysis when error term follows skewed t distribution, 10 ) Estimating parameters of a given distribution fitted to grouped data using method of maximum likelihood, and 11 ) Estimating parameters of the Johnson SB distribution through the Bayesian, method of moment, conditional maximum likelihood, and two - percentile method.

r-mcmsupply 1.1.1
Propagated dependencies: r-tidyverse@2.0.0 r-tidyr@1.3.1 r-tidybayes@3.0.7 r-tibble@3.2.1 r-stringr@1.5.1 r-runjags@2.2.2-5 r-rlang@1.1.6 r-readxl@1.4.5 r-r2jags@0.8-9 r-plyr@1.8.9 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-foreach@1.5.2 r-dplyr@1.1.4 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://hannahcomiskey.github.io/mcmsupply/
Licenses: Expat
Synopsis: Estimating Public and Private Sector Contraceptive Market Supply Shares
Description:

Family Planning programs and initiatives typically use nationally representative surveys to estimate key indicators of a countryâ s family planning progress. However, in recent years, routinely collected family planning services data (Service Statistics) have been used as a supplementary data source to bridge gaps in the surveys. The use of service statistics comes with the caveat that adjustments need to be made for missing private sector contributions to the contraceptive method supply chain. Evaluating the supply source of modern contraceptives often relies on Demographic Health Surveys (DHS), where many countries do not have recent data beyond 2015/16. Fortunately, in the absence of recent surveys we can rely on statistical model-based estimates and projections to fill the knowledge gap. We present a Bayesian, hierarchical, penalized-spline model with multivariate-normal spline coefficients, to account for across method correlations, to produce country-specific,annual estimates for the proportion of modern contraceptive methods coming from the public and private sectors. This package provides a quick and convenient way for users to access the DHS modern contraceptive supply share data at national and subnational administration levels, estimate, evaluate and plot annual estimates with uncertainty for a sample of low- and middle-income countries. Methods for the estimation of method supply shares at the national level are described in Comiskey, Alkema, Cahill (2022) <arXiv:2212.03844>.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
Total results: 30177