Several quality measurements for investigating the performance of dimensionality reduction methods are provided here. In addition a new quality measurement called Gabriel classification error is made accessible, which was published in Thrun, M. C., Märte, J., & Stier, Q: "Analyzing Quality Measurements for Dimensionality Reduction" (2023), Machine Learning and Knowledge Extraction (MAKE), <DOI:10.3390/make5030056>.
Using these tools to simplify the research process of political science and other social sciences. The current version can create folder system for academic project in political science, calculate psychological trait scores, visualize experimental and spatial data, and set up color-blind palette, functions used in academic research of political psychology or political science in general.
Assessing forest ecosystem health is an effective way for forest resource management.The national forest health evaluation system at the forest stand level using analytic hierarchy process, has a high application value and practical significance. The package can effectively and easily realize the total assessment process, and help foresters to further assess and management forest resources.
This package contains functions for fitting shared frailty models with a semi-parametric baseline hazard with the Expectation-Maximization algorithm. Supported data formats include clustered failures with left truncation and recurrent events in gap-time or Andersen-Gill format. Several frailty distributions, such as the the gamma, positive stable and the Power Variance Family are supported.
This package provides functionality to produce graphs of probability density functions and cumulative distribution functions with few keystrokes, allows shading under the curve of the probability density function to illustrate concepts such as p-values and critical values, and fits a simple linear regression line on a scatter plot with the equation as the main title.
This package provides functions and methods for organizing data in hypercubes (i.e., a multi-dimensional cube). Cubes are generated from molten data frames. Each cube can be manipulated with five operations: rotation (change.dimensionOrder()
), dicing and slicing (add.selection()
, remove.selection()
), drilling down (add.aggregation()
), and rolling up (remove.aggregation()
).
This package implements the method developed by Cao and Kosorok (2011) for the significance analysis of thousands of features in high-dimensional biological studies. It is an asymptotically valid data-driven procedure to find critical values for rejection regions controlling the k-familywise error rate, false discovery rate, and the tail probability of false discovery proportion.
Set of functions to impute missing rare earth data, calculate La and Pr concentrations and Ce anomalies in zircons based on the Chondrite-Onuma and Chondrite-Lattice of Carrasco-Godoy and Campbell (2023) <doi:10.1007/s00410-023-02025-9> and the Logarithmic regression from Zhong et al. (2019) <doi:10.1007/s00710-019-00682-y>.
Hypothesis testing of the parameters of multivariate normal distributions, including the testing of a single mean vector, two mean vectors, multiple mean vectors, a single covariance matrix, multiple covariance matrices, a mean and a covariance matrix simultaneously, and the testing of independence of multivariate normal random vectors. Huixuan, Gao (2005, ISBN:9787301078587), "Applied Multivariate Statistical Analysis".
Training of neural networks using backpropagation, resilient backpropagation with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993) or the modified globally convergent version by Anastasiadis et al. (2005). The package allows flexible settings through custom-choice of error and activation function. Furthermore, the calculation of generalized weights (Intrator O & Intrator N, 1993) is implemented.
This package provides the tools needed to benchmark the R2 value corresponding to a certain acceptable noise level while also providing a rescaling function based on that noise level yielding a new value of R2 we refer to as R2k which is independent of both the number of degrees of freedom and the noise distribution function.
Implementation of propensity clustering and decomposition as described in Ranola et al. (2013) <doi:10.1186/1752-0509-7-21>. Propensity decomposition can be viewed on the one hand as a generalization of the eigenvector-based approximation of correlation networks, and on the other hand as a generalization of random multigraph models and conformity-based decompositions.
This package contains functions to calculate power and sample size for various study designs used in bioequivalence studies. Use known.designs()
to see the designs supported. Power and sample size can be obtained based on different methods, amongst them prominently the TOST procedure (two one-sided t-tests). See README and NEWS for further information.
Poisson disk sampling is a method of generating blue noise sample patterns where all samples are at least a specified distance apart. Poisson samples may be generated in two or three dimensions with this package. The algorithm used is an implementation of Bridson's "Fast Poisson disk sampling in arbitrary dimensions" <doi:10.1145%2F1278780.1278807>.
This package provides a rudimentary sequencer to define, manipulate and mix sound samples. The underlying motivation is to sonify data, as demonstrated in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).
This package implements a segmentation algorithm for multiple change-point detection in high-dimensional GARCH processes. It simultaneously segments GARCH processes by identifying common change-points, each of which can be shared by a subset or all of the component time series as a change-point in their within-series and/or cross-sectional correlation structure.
Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>
.
Models the direction of the maximum horizontal stress using relative plate motion parameters. Statistical algorithms to evaluate the modeling results compared with the observed data. Provides plots to visualize the results. Methods described in Stephan et al. (2023) <doi:10.1038/s41598-023-42433-2> and Wdowinski (1998) <doi:10.1016/S0079-1946(98)00091-3>.
Helps the user to build and register schema descriptions of disorganised (messy) tables. Disorganised tables are tables that are not in a topologically coherent form, where packages such as tidyr could be used for reshaping. The schema description documents the arrangement of input tables and is used to reshape them into a standardised (tidy) output format.
Loading the Korea Labor Institute's KLIPS (Korea Labor & Income Panel Study) panel data and returning data frames. Users must download 26 years of panel data from the Korea Labor Institute website and save it in a folder in an appropriate path. Afterwards, users can easily convert the data into a data frame using this package.
The US Census Bureau provides a seasonal adjustment program now called X-13ARIMA-SEATS building on both earlier programs called X-11 and X-12 as well as the SEATS program by the Bank of Spain. The US Census Bureau offers both source and binary versions -- which this package integrates for use by other R packages.
This package allows the estimation of hierarchical F-statistics from haploid or diploid genetic data with any numbers of levels in the hierarchy, following the algorithm of Yang (Evolution, 1998, 52(4):950-956). Functions are also given to test via randomisations the significance of each F and variance components, using the likelihood-ratio statistics G.
fcitx5-rime provides the Rime input method engine for fcitx5. Rime is a lightweight, extensible input method engine supporting various input schemas including glyph-based input methods, romanization-based input methods as well as those for Chinese dialects. It has the ability to compose phrases and sentences intelligently and provide very accurate traditional Chinese output.
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. Under the local randomization approach, RD designs can be interpreted as randomized experiments inside a window around the cutoff. This package provides tools to perform randomization inference for RD designs under local randomization: rdrandinf()
to perform hypothesis testing using randomization inference, rdwinselect()
to select a window around the cutoff in which randomization is likely to hold, rdsensitivity()
to assess the sensitivity of the results to different window lengths and null hypotheses and rdrbounds()
to construct Rosenbaum bounds for sensitivity to unobserved confounders. See Cattaneo, Titiunik and Vazquez-Bare (2016) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2016_Stata.pdf>
for further methodological details.