Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.
This package provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including 1) data simulation and visualization; 2) correlation structure assessment (here also known as the Normal To Anything); 3) calculate multivariate normal rectangle probabilities; 4) likelihood inference and parallel prediction at predictive locations. Description of the method is available from: Han and DeOliveira (2018) <doi:10.18637/jss.v087.i13>.
Create interactive visualization charts to draw data in three dimensional graphs. The graphs can be included in Shiny apps and R markdown documents, or viewed from the R console and RStudio Viewer. Based on the vis.js Graph3d module and the htmlwidgets R package.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package implemented a granularity-based dimension-agnostic tool for the identification of spatially variable genes. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
Analyzes joint attribute data (e.g., species abundance) that are combinations of continuous and discrete data with Gibbs sampling. Full model and computation details are described in Clark et al. (2018) <doi:10.1002/ecm.1241>.
Basic functions for plotting 2D and 3D views of a sphere, by default the Earth with its major coastline, and additional lines and points.
This package provides a suite of custom R Markdown formats and templates for authoring web pages styled with the GOV.UK Design System.
Calculates additive and dominance genetic relationship matrices and their inverses, in matrix and tabular-sparse formats. It includes functions for checking and processing pedigree, calculating inbreeding coefficients (Meuwissen & Luo, 1992 <doi:10.1186/1297-9686-24-4-305>), as well as functions to calculate the matrix of genetic group contributions (Q), and adding those contributions to the genetic merit of animals (Quaas (1988) <doi:10.3168/jds.S0022-0302(88)79691-5>). Calculation of Q is computationally extensive. There are computationally optimized functions to calculate Q.
Draws gene or genome maps and comparisons between these, in a publication-grade manner. Starting from simple, common files, it will draw postscript or PDF files that can be sent as such to journals.
Flexible and robust estimation and inference of Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models with covariates ('X') based on the results by Francq and Thieu (2019) <doi:10.1017/S0266466617000512>. Coefficients can straightforwardly be set to zero by omission, and quasi maximum likelihood methods ensure estimates are generally consistent and inference valid, even when the standardised innovations are non-normal and/or dependent over time. See <doi:10.32614/RJ-2021-057> for an overview of the package.
This package provides facilities to read, write and validate geographic metadata defined with ISO TC211 / OGC ISO geographic information metadata standards, and encoded using the ISO 19139 and ISO 19115-3 (XML) standard technical specifications. This includes ISO 19110 (Feature cataloguing), 19115 (dataset metadata), 19119 (service metadata) and 19136 (GML). Other interoperable schemas from the OGC are progressively supported as well, such as the Sensor Web Enablement (SWE) Common Data Model, the OGC GML Coverage Implementation Schema (GMLCOV), or the OGC GML Referenceable Grid (GMLRGRID).
Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
Implement some models for correlation/covariance matrices including two approaches to model correlation matrices from a graphical structure. One use latent parent variables as proposed in Sterrantino et. al. (2024) <doi:10.48550/arXiv.2312.06289>. The other uses a graph to specify conditional relations between the variables. The graphical structure makes correlation matrices interpretable and avoids the quadratic increase of parameters as a function of the dimension. In the first approach a natural sequence of simpler models along with a complexity penalization is used. The second penalizes deviations from a base model. These can be used as prior for model parameters, considering C code through the cgeneric interface for the INLA package (<https://www.r-inla.org>). This allows one to use these models as building blocks combined and to other latent Gaussian models in order to build complex data models.
This package provides a collection difference measures for multivariate Gaussian probability density functions, such as the Euclidea mean, the Mahalanobis distance, the Kullback-Leibler divergence, the J-Coefficient, the Minkowski L2-distance, the Chi-square divergence and the Hellinger Coefficient.
Calculate different glucose variability measures, including average measures of glycemia, measures of glycemic variability and measures of glycemic risk, from continuous glucose monitoring data. Boris P. Kovatchev, Erik Otto, Daniel Cox, Linda Gonder-Frederick, and William Clarke (2006) <doi:10.2337/dc06-1085>. Jean-Pierre Le Floch, Philippe Escuyer, Eric Baudin, Dominique Baudon, and Leon Perlemuter (1990) <doi:10.2337/diacare.13.2.172>. C.M. McDonnell, S.M. Donath, S.I. Vidmar, G.A. Werther, and F.J. Cameron (2005) <doi:10.1089/dia.2005.7.253>. Everitt, Brian (1998) <doi:10.1111/j.1751-5823.2011.00149_2.x>. Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) <doi:10.2307/2234167>. Dougherty, R. L., Edelman, A. and Hyman, J. M. (1989) <doi:10.1090/S0025-5718-1989-0962209-1>. Tukey, J. W. (1977) <doi:10.1016/0377-2217(86)90209-2>. F. John Service (2013) <doi:10.2337/db12-1396>. Edmond A. Ryan, Tami Shandro, Kristy Green, Breay W. Paty, Peter A. Senior, David Bigam, A.M. James Shapiro, and Marie-Christine Vantyghem (2004) <doi:10.2337/diabetes.53.4.955>. F. John Service, George D. Molnar, John W. Rosevear, Eugene Ackerman, Leal C. Gatewood, William F. Taylor (1970) <doi:10.2337/diab.19.9.644>. Sarah E. Siegelaar, Frits Holleman, Joost B. L. Hoekstra, and J. Hans DeVries (2010) <doi:10.1210/er.2009-0021>. Gabor Marics, Zsofia Lendvai, Csaba Lodi, Levente Koncz, David Zakarias, Gyorgy Schuster, Borbala Mikos, Csaba Hermann, Attila J. Szabo, and Peter Toth-Heyn (2015) <doi:10.1186/s12938-015-0035-3>. Thomas Danne, Revital Nimri, Tadej Battelino, Richard M. Bergenstal, Kelly L. Close, J. Hans DeVries, SatishGarg, Lutz Heinemann, Irl Hirsch, Stephanie A. Amiel, Roy Beck, Emanuele Bosi, Bruce Buckingham, ClaudioCobelli, Eyal Dassau, Francis J. Doyle, Simon Heller, Roman Hovorka, Weiping Jia, Tim Jones, Olga Kordonouri,Boris Kovatchev, Aaron Kowalski, Lori Laffel, David Maahs, Helen R. Murphy, Kirsten Nørgaard, Christopher G.Parkin, Eric Renard, Banshi Saboo, Mauro Scharf, William V. Tamborlane, Stuart A. Weinzimer, and Moshe Phillip.International consensus on use of continuous glucose monitoring.Diabetes Care, 2017 <doi:10.2337/dc17-1600>.
This package provides an R interface to the GeoServer REST API, allowing to upload and publish data in a GeoServer web-application and expose data to OGC Web-Services. The package currently supports all CRUD (Create,Read,Update,Delete) operations on GeoServer workspaces, namespaces, datastores (stores of vector data), featuretypes, layers, styles, as well as vector data upload operations. For more information about the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>.
This package provides two methods for automatic calculation of gene scores from gene count tables: the z-score method, which requires a table of samples being scored and a count table with control samples, and the geometric mean method, which does not rely on control samples. The mathematical methods implemented are described by Kim et al. (2018) <doi:10.1089/jir.2017.0127>.
Estimation and analysis of group-based multivariate trajectory models (Nagin, 2018 <doi:10.1177/0962280216673085>; Magrini, 2022 <doi:10.1007/s10182-022-00437-9>). The package implements an Expectation-Maximization (EM) algorithm allowing unbalanced panel and missing values, and provides several functionalities for prediction and graphical representation.
We implement two main functions. The first function uses a given grouped and/or right-censored grouping scheme and empirical data to infer parameters, and implements chi-square goodness-of-fit tests. The second function searches for the global optimal grouping scheme of grouped and/or right-censored count responses in surveys.
High performance trainers for parameterizing and clustering weighted data. The Gaussian mixture (GM) module includes the conventional EM (expectation maximization) trainer, the component-wise EM trainer, the minimum-message-length EM trainer by Figueiredo and Jain (2002) <doi:10.1109/34.990138>. These trainers accept additional constraints on mixture weights, covariance eigen ratios and on which mixture components are subject to update. The K-means (KM) module offers clustering with the options of (i) deterministic and stochastic K-means++ initializations, (ii) upper bounds on cluster weights (sizes), (iii) Minkowski distances, (iv) cosine dissimilarity, (v) dense and sparse representation of data input. The package improved the typical implementations of GM and KM algorithms in various aspects. It is carefully crafted in multithreaded C++ for modeling large data for industry use.
Routines for log-linear models of incomplete contingency tables, including some latent class models, via EM and Fisher scoring approaches. Allows bootstrapping. See Espeland and Hui (1987) <doi:10.2307/2531553> for general approach.
Simplify ggplot2 visualisation with ggblanket wrapper functions.
This package provides functions for graph matching via nodes degree profiles are provided in this package. The models we can handle include Erdos-Renyi random graphs and stochastic block models(SBM). More details are in the reference paper: Yaofang Hu, Wanjie Wang and Yi Yu (2020) <arXiv:2006.03284>.
The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor's similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.