_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-surfrough 0.0.1.2
Propagated dependencies: r-terra@1.8-86 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/strevisani/SurfRough
Licenses: Expat
Build system: r
Synopsis: Calculate Surface/Image Texture Indexes
Description:

This package provides methods for the computation of surface/image texture indices using a geostatistical based approach (Trevisani et al. (2023) <doi:10.1016/j.catena.2023.106927> and Trevisani and Guth (2025) <doi:10.3390/rs17233864>). It provides various functions for the computation of surface texture indices (e.g., omnidirectional roughness and roughness anisotropy), including the ones based on the robust MAD estimator. The kernels included in the software permit also to calculate the surface/image texture indices directly from the input surface (i.e., without de-trending) using increments of order 2 and of order 4. It also provides the new radial roughness index (RRI), representing the improvement of the popular topographic roughness index (TRI). The framework can be easily extended with ad-hoc surface/image texture indices.

r-msquality 1.10.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-spectra@1.20.0 r-shinydashboard@0.7.3 r-shiny@1.11.1 r-rmzqc@0.7.0 r-rlang@1.1.6 r-protgenerics@1.42.0 r-plotly@4.11.0 r-msexperiment@1.12.0 r-msdata@0.50.0 r-htmlwidgets@1.6.4 r-ggplot2@4.0.1 r-biocparallel@1.44.0
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://www.github.com/tnaake/MsQuality/
Licenses: GPL 3
Build system: r
Synopsis: MsQuality - Quality metric calculation from Spectra and MsExperiment objects
Description:

The MsQuality provides functionality to calculate quality metrics for mass spectrometry-derived, spectral data at the per-sample level. MsQuality relies on the mzQC framework of quality metrics defined by the Human Proteom Organization-Proteomics Standards Initiative (HUPO-PSI). These metrics quantify the quality of spectral raw files using a controlled vocabulary. The package is especially addressed towards users that acquire mass spectrometry data on a large scale (e.g. data sets from clinical settings consisting of several thousands of samples). The MsQuality package allows to calculate low-level quality metrics that require minimum information on mass spectrometry data: retention time, m/z values, and associated intensities. MsQuality relies on the Spectra package, or alternatively the MsExperiment package, and its infrastructure to store spectral data.

r-chisquare 1.2
Propagated dependencies: r-gt@1.3.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=chisquare
Licenses: GPL 2+
Build system: r
Synopsis: Chi-Square and G-Square Test of Independence, Power and Residual Analysis, Measures of Categorical Association
Description:

This package provides the facility to perform the chi-square and G-square test of independence, calculates the retrospective power of the traditional chi-square test, compute permutation and Monte Carlo p-value, and provides measures of association for tables of any size such as Phi, Phi corrected, odds ratio with 95 percent CI and p-value, Yule Q and Y, adjusted contingency coefficient, Cramer's V, V corrected, V standardised, bias-corrected V, W, Cohen's w, Goodman-Kruskal's lambda, and tau. It also calculates standardised, moment-corrected standardised, and adjusted standardised residuals, and their significance, as well as the Quetelet Index, IJ association factor, and adjusted standardised counts. It also computes the chi-square-maximising version of the input table. Different outputs are returned in nicely formatted tables.

r-collinear 3.0.0
Propagated dependencies: r-rlang@1.1.6 r-recipes@1.3.1 r-ranger@0.17.0 r-progressr@0.18.0 r-mgcv@1.9-4 r-future-apply@1.20.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://blasbenito.github.io/collinear/
Licenses: Expat
Build system: r
Synopsis: Automated Multicollinearity Management
Description:

This package provides a comprehensive and automated workflow for managing multicollinearity in data frames with numeric and/or categorical variables. The package integrates five robust methods into a single function: (1) target encoding of categorical variables based on response values (Micci-Barreca, 2001 (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); (2) automated feature prioritization to preserve key predictors during filtering; (3 and 4) pairwise correlation and VIF filtering across all variable types (numericâ numeric, numericâ categorical, and categoricalâ categorical); (5) adaptive correlation and VIF thresholds. Together, these methods enable a reliable multicollinearity management in most use cases while maintaining model integrity. The package also supports parallel processing and progress tracking via the packages future and progressr', and provides seamless integration with the tidymodels ecosystem through a dedicated recipe step.

r-varshrink 0.3.3
Propagated dependencies: r-vars@1.6-1 r-strucchange@1.5-4 r-mvtnorm@1.3-3 r-mass@7.3-65 r-corpcor@1.6.10 r-ars@0.8
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/namgillee/VARshrink/
Licenses: GPL 3+
Build system: r
Synopsis: Shrinkage Estimation Methods for Vector Autoregressive Models
Description:

Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) <doi:10.2307/1268518>, a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) <doi:10.1186/1471-2105-8-S2-S3>, and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) <doi:10.1016/j.csda.2016.03.007> and Ni and Sun (2005) <doi:10.1198/073500104000000622>.

r-alphasimr 2.1.0
Propagated dependencies: r-rdpack@2.6.4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-r6@2.6.1 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/gaynorr/AlphaSimR
Licenses: Expat
Build system: r
Synopsis: Breeding Program Simulations
Description:

The successor to the AlphaSim software for breeding program simulation [Faux et al. (2016) <doi:10.3835/plantgenome2016.02.0013>]. Used for stochastic simulations of breeding programs to the level of DNA sequence for every individual. Contained is a wide range of functions for modeling common tasks in a breeding program, such as selection and crossing. These functions allow for constructing simulations of highly complex plant and animal breeding programs via scripting in the R software environment. Such simulations can be used to evaluate overall breeding program performance and conduct research into breeding program design, such as implementation of genomic selection. Included is the Markovian Coalescent Simulator ('MaCS') for fast simulation of biallelic sequences according to a population demographic history [Chen et al. (2009) <doi:10.1101/gr.083634.108>].

r-pangoling 1.0.3
Propagated dependencies: r-tidytable@0.11.2 r-tidyselect@1.2.1 r-rstudioapi@0.17.1 r-reticulate@1.44.1 r-memoise@2.0.1 r-data-table@1.17.8 r-cachem@1.1.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://docs.ropensci.org/pangoling/
Licenses: Expat
Build system: r
Synopsis: Access to Large Language Model Predictions
Description:

This package provides access to word predictability estimates using large language models (LLMs) based on transformer architectures via integration with the Hugging Face ecosystem <https://huggingface.co/>. The package interfaces with pre-trained neural networks and supports both causal/auto-regressive LLMs (e.g., GPT-2') and masked/bidirectional LLMs (e.g., BERT') to compute the probability of words, phrases, or tokens given their linguistic context. For details on GPT-2 and causal models, see Radford et al. (2019) <https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf>, for details on BERT and masked models, see Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a straightforward estimation of word predictability, the package facilitates research in psycholinguistics, computational linguistics, and natural language processing (NLP).

r-qountstat 0.1.1
Propagated dependencies: r-multcomp@1.4-29
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://cran.r-project.org/package=qountstat
Licenses: Expat
Build system: r
Synopsis: Statistical Analysis of Count Data and Quantal Data
Description:

This package provides methods for statistical analysis of count data and quantal data. For the analysis of count data an implementation of the Closure Principle Computational Approach Test ("CPCAT") is provided (Lehmann, R et al. (2016) <doi:10.1007/s00477-015-1079-4>), as well as an implementation of a "Dunnett GLM" approach using a Quasi-Poisson regression (Hothorn, L, Kluxen, F (2020) <doi:10.1101/2020.01.15.907881>). For the analysis of quantal data an implementation of the Closure Principle Fisherâ Freemanâ Halton test ("CPFISH") is provided (Lehmann, R et al. (2018) <doi:10.1007/s00477-017-1392-1>). P-values and no/lowest observed (adverse) effect concentration values are calculated. All implemented methods include further functions to evaluate the power and the minimum detectable difference using a bootstrapping approach.

r-spotlight 1.14.0
Propagated dependencies: r-sparsematrixstats@1.22.0 r-singlecellexperiment@1.32.0 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-matrix@1.7-4 r-ggplot2@4.0.1
Channel: guix-bioc
Location: guix-bioc/packages/s.scm (guix-bioc packages s)
Home page: https://github.com/MarcElosua/SPOTlight
Licenses: GPL 3
Build system: r
Synopsis: `SPOTlight`: Spatial Transcriptomics Deconvolution
Description:

`SPOTlight` provides a method to deconvolute spatial transcriptomics spots using a seeded NMF approach along with visualization tools to assess the results. Spatially resolved gene expression profiles are key to understand tissue organization and function. However, novel spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots).

r-archidart 3.4
Propagated dependencies: r-xml@3.99-0.20 r-sp@2.2-0 r-gtools@3.9.5 r-geometry@0.5.2
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://archidart.github.io/
Licenses: GPL 2
Build system: r
Synopsis: Plant Root System Architecture Analysis Using DART and RSML Files
Description:

Analysis of complex plant root system architectures (RSA) using the output files created by Data Analysis of Root Tracings (DART), an open-access software dedicated to the study of plant root architecture and development across time series (Le Bot et al (2010) "DART: a software to analyse root system architecture and development from captured images", Plant and Soil, <DOI:10.1007/s11104-009-0005-2>), and RSA data encoded with the Root System Markup Language (RSML) (Lobet et al (2015) "Root System Markup Language: toward a unified root architecture description language", Plant Physiology, <DOI:10.1104/pp.114.253625>). More information can be found in Delory et al (2016) "archiDART: an R package for the automated computation of plant root architectural traits", Plant and Soil, <DOI:10.1007/s11104-015-2673-4>.

r-popdesign 1.1.0
Propagated dependencies: r-magick@2.9.0 r-knitr@1.50 r-iso@0.0-21
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PoPdesign
Licenses: GPL 2
Build system: r
Synopsis: Posterior Predictive (PoP) Design for Phase I Clinical Trials
Description:

The primary goal of phase I clinical trials is to find the maximum tolerated dose (MTD). To reach this objective, we introduce a new design for phase I clinical trials, the posterior predictive (PoP) design. The PoP design is an innovative model-assisted design that is as simply as the conventional algorithmic designs as its decision rules can be pre-tabulated prior to the onset of trial, but is of more flexibility of selecting diverse target toxicity rates and cohort sizes. The PoP design has desirable properties, such as coherence and consistency. Moreover, the PoP design provides better empirical performance than the BOIN and Keyboard design with respect to high average probabilities of choosing the MTD and slightly lower risk of treating patients at subtherapeutic or overly toxic doses.

r-simdesign 2.21
Propagated dependencies: r-beepr@2.0 r-clipr@0.8.0 r-codetools@0.2-20 r-dplyr@1.1.4 r-future@1.68.0 r-future-apply@1.20.0 r-parallelly@1.45.1 r-pbapply@1.7-4 r-progressr@0.18.0 r-r-utils@2.13.0 r-sessioninfo@1.2.3 r-testthat@3.3.0
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: http://philchalmers.github.io/SimDesign/
Licenses: GPL 2+
Build system: r
Synopsis: Structure for organizing Monte Carlo simulation designs
Description:

This package provides tools to safely and efficiently organize and execute Monte Carlo simulation experiments in R. The package controls the structure and back-end of Monte Carlo simulation experiments by utilizing a generate-analyse-summarise workflow. The workflow safeguards against common simulation coding issues, such as automatically re-simulating non-convergent results, prevents inadvertently overwriting simulation files, catches error and warning messages during execution, implicitly supports parallel processing with high-quality random number generation, and provides tools for managing high-performance computing (HPC) array jobs submitted to schedulers such as SLURM. For a pedagogical introduction to the package see Sigal and Chalmers (2016) <doi:10.1080/10691898.2016.1246953>. For a more in-depth overview of the package and its design philosophy see Chalmers and Adkins (2020) <doi:10.20982/tqmp.16.4.p248>.

r-glmmisrep 0.1.1
Propagated dependencies: r-poisson-glm-mix@1.4 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glmMisrep
Licenses: GPL 2+
Build system: r
Synopsis: Generalized Linear Models Adjusting for Misrepresentation
Description:

Fit Generalized Linear Models to continuous and count outcomes, as well as estimate the prevalence of misrepresentation of an important binary predictor. Misrepresentation typically arises when there is an incentive for the binary factor to be misclassified in one direction (e.g., in insurance settings where policy holders may purposely deny a risk status in order to lower the insurance premium). This is accomplished by treating a subset of the response variable as resulting from a mixture distribution. Model parameters are estimated via the Expectation Maximization algorithm and standard errors of the estimates are obtained from closed forms of the Observed Fisher Information. For an introduction to the models and the misrepresentation framework, see Xia et. al., (2023) <https://variancejournal.org/article/73151-maximum-likelihood-approaches-to-misrepresentation-models-in-glm-ratemaking-model-comparisons>.

r-sparsedfm 1.0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrix@1.7-4 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sparseDFM
Licenses: GPL 3+
Build system: r
Synopsis: Estimate Dynamic Factor Models with Sparse Loadings
Description:

Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <arXiv:2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in C++ and linked to R via RcppArmadillo'.

r-excluster 1.28.0
Propagated dependencies: r-rtracklayer@1.70.0 r-rsubread@2.24.0 r-matrixstats@1.5.0 r-iranges@2.44.0 r-genomicranges@1.62.0
Channel: guix-bioc
Location: guix-bioc/packages/e.scm (guix-bioc packages e)
Home page: https://bioconductor.org/packages/ExCluster
Licenses: GPL 3
Build system: r
Synopsis: ExCluster robustly detects differentially expressed exons between two conditions of RNA-seq data, requiring at least two independent biological replicates per condition
Description:

ExCluster flattens Ensembl and GENCODE GTF files into GFF files, which are used to count reads per non-overlapping exon bin from BAM files. This read counting is done using the function featureCounts from the package Rsubread. Library sizes are normalized across all biological replicates, and ExCluster then compares two different conditions to detect signifcantly differentially spliced genes. This process requires at least two independent biological repliates per condition, and ExCluster accepts only exactly two conditions at a time. ExCluster ultimately produces false discovery rates (FDRs) per gene, which are used to detect significance. Exon log2 fold change (log2FC) means and variances may be plotted for each significantly differentially spliced gene, which helps scientists develop hypothesis and target differential splicing events for RT-qPCR validation in the wet lab.

r-cooltools 2.18
Propagated dependencies: r-sp@2.2-0 r-rcpp@1.1.0 r-raster@3.6-32 r-randtoolbox@2.0.5 r-pracma@2.4.6 r-png@0.1-8 r-plotrix@3.8-13 r-mass@7.3-65 r-jpeg@0.1-11 r-hdf5r@1.3.12 r-fnn@1.1.4.1 r-float@0.3-3 r-data-table@1.17.8 r-cubature@2.1.4-1 r-celestial@1.5.8 r-bit64@4.6.0-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cooltools
Licenses: GPL 3
Build system: r
Synopsis: Practical Tools for Scientific Computations and Visualizations
Description:

Collection of routines for efficient scientific computations in physics and astrophysics. These routines include utility functions, numerical computation tools, as well as visualisation tools. They can be used, for example, for generating random numbers from spherical and custom distributions, information and entropy analysis, special Fourier transforms, two-point correlation estimation (e.g. as in Landy & Szalay (1993) <doi:10.1086/172900>), binning & gridding of point sets, 2D interpolation, Monte Carlo integration, vector arithmetic and coordinate transformations. Also included is a non-exhaustive list of important constants and cosmological conversion functions. The graphics routines can be used to produce and export publication-ready scientific plots and movies, e.g. as used in Obreschkow et al. (2020, MNRAS Vol 493, Issue 3, Pages 4551â 4569). These routines include special color scales, projection functions, and bitmap handling routines.

r-lipidomer 0.1.2
Propagated dependencies: r-tidyr@1.3.1 r-tableone@0.13.2 r-stringr@1.6.0 r-shadowtext@0.1.6 r-reshape2@1.4.5 r-limma@3.66.0 r-knitr@1.50 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-biocmanager@1.30.27
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://tommi-s.github.io/
Licenses: GPL 3
Build system: r
Synopsis: Integrative Visualizations of the Lipidome
Description:

Create lipidome-wide heatmaps of statistics with the lipidomeR'. The lipidomeR provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the lipidomeR helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.

r-mutualinf 2.0.4
Propagated dependencies: r-runner@0.4.4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/RafaelFuentealbaC/mutualinf
Licenses: GPL 3
Build system: r
Synopsis: Computation and Decomposition of the Mutual Information Index
Description:

The Mutual Information Index (M) introduced to social science literature by Theil and Finizza (1971) <doi:10.1080/0022250X.1971.9989795> is a multigroup segregation measure that is highly decomposable and that according to Frankel and Volij (2011) <doi:10.1016/j.jet.2010.10.008> and Mora and Ruiz-Castillo (2011) <doi:10.1111/j.1467-9531.2011.01237.x> satisfies the Strong Unit Decomposability and Strong Group Decomposability properties. This package allows computing and decomposing the total index value into its "between" and "within" terms. These last terms can also be decomposed into their contributions, either by group or unit characteristics. The factors that produce each "within" term can also be displayed at the user's request. The results can be computed considering a variable or sets of variables that define separate clusters.

r-conmition 0.2.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=conMItion
Licenses: GPL 2
Build system: r
Synopsis: Conditional Mutual Information Estimation for Multi-Omics Data
Description:

The biases introduced in association measures, particularly mutual information, are influenced by factors such as tumor purity, mutation burden, and hypermethylation. This package provides the estimation of conditional mutual information (CMI) and its statistical significance with a focus on its application to multi-omics data. Utilizing B-spline functions (inspired by Daub et al. (2004) <doi:10.1186/1471-2105-5-118>), the package offers tools to estimate the association between heterogeneous multi- omics data, while removing the effects of confounding factors. This helps to unravel complex biological interactions. In addition, it includes methods to evaluate the statistical significance of these associations, providing a robust framework for multi-omics data integration and analysis. This package is ideal for researchers in computational biology, bioinformatics, and systems biology seeking a comprehensive tool for understanding interdependencies in omics data.

r-dbcvindex 1.6
Propagated dependencies: r-qpdf@1.4.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/davidechicco/DBCVindex
Licenses: GPL 3
Build system: r
Synopsis: Calculates the Density-Based Clustering Validation (DBCV) Index
Description:

This package provides a metric called Density-Based Clustering Validation index (DBCV) index to evaluate clustering results, following the <https://github.com/pajaskowiak/clusterConfusion/blob/main/R/dbcv.R> R implementation by Pablo Andretta Jaskowiak. Original DBCV index article: Moulavi, D., Jaskowiak, P. A., Campello, R. J., Zimek, A., and Sander, J. (April 2014), "Density-based clustering validation", Proceedings of SDM 2014 -- the 2014 SIAM International Conference on Data Mining (pp. 839-847), <doi:10.1137/1.9781611973440.96>. A more recent article on the DBCV index: Chicco, D., Sabino, G.; Oneto, L.; Jurman, G. (August 2025), "The DBCV index is more informative than DCSI, CDbw, and VIASCKDE indices for unsupervised clustering internal assessment of concave-shaped and density-based clusters", PeerJ Computer Science 11:e3095 (pp. 1-), <doi:10.7717/peerj-cs.3095>.

r-footbayes 2.0.0
Dependencies: pandoc@2.19.2 pandoc@2.19.2
Propagated dependencies: r-tidyr@1.3.1 r-rstan@2.32.7 r-rlang@1.1.6 r-reshape2@1.4.5 r-posterior@1.6.1 r-numderiv@2016.8-1.1 r-metrology@0.9-29-2 r-matrixstats@1.5.0 r-magrittr@2.0.4 r-instantiate@0.2.3 r-ggridges@0.5.7 r-ggplot2@4.0.1 r-extradistr@1.10.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/leoegidi/footbayes
Licenses: GPL 2
Build system: r
Synopsis: Fitting Bayesian and MLE Football Models
Description:

This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t, diagonal-inflated bivariate Poisson, and zero-inflated Skellam. It supports both maximum likelihood estimation (MLE, for static models only) and Bayesian inference. For Bayesian methods, it incorporates several techniques: MCMC sampling with Hamiltonian Monte Carlo, variational inference using either the Pathfinder algorithm or Automatic Differentiation Variational Inference (ADVI), and the Laplace approximation. The package compiles all the CmdStan models once during installation using the instantiate package. The model construction relies on the most well-known football references, such as Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>, Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.

r-volumodel 0.2.3
Propagated dependencies: r-viridislite@0.4.2 r-terra@1.8-86 r-sf@1.0-23 r-rnaturalearth@1.1.0 r-rangebuilder@2.2 r-modeva@3.41 r-metr@0.18.3 r-ggtext@0.1.2 r-ggplot2@4.0.1 r-fields@17.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://hannahlowens.github.io/voluModel/
Licenses: GPL 3
Build system: r
Synopsis: Modeling Species Distributions in Three Dimensions
Description:

Facilitates modeling species ecological niches and geographic distributions based on occurrences and environments that have a vertical as well as horizontal component, and projecting models into three-dimensional geographic space. Working in three dimensions is useful in an aquatic context when the organisms one wishes to model can be found across a wide range of depths in the water column. The package also contains functions to automatically generate marine training model training regions using machine learning, and interpolate and smooth patchily sampled environmental rasters using thin plate splines. Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, McGuire JA (2016) <doi:10.1038/ncomms11484>. Nychka D, Furrer R, Paige J, Sain S (2021) <doi:10.5065/D6W957CT>. Pateiro-Lopez B, Rodriguez-Casal A (2022) <https://CRAN.R-project.org/package=alphahull>.

r-asymmetry 2.0.5
Propagated dependencies: r-smacof@2.1-7 r-gplots@3.2.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=asymmetry
Licenses: GPL 3+
Build system: r
Synopsis: Multidimensional Scaling of Asymmetric Proximities
Description:

Multidimensional scaling models and methods for the visualization and analysis of asymmetric proximity data. An asymmetric data matrix has the same number of rows and columns, and these rows and columns refer to the same set of objects. At least some elements in the upper-triangle are different from the corresponding elements in the lower triangle. An example of an asymmetric matrix is a student migration table, where the rows correspond to the countries of origin of the students and the columns to the destination countries. This package provides algorithms for three multidimensional scaling models, the slide-vector model, a scaling model with unique dimensions and the asymscal model.Furthermore, some other procedures, such as a heat map for skew-symmetric data, and the decomposition of asymmetry are also provided for the exploratory analysis of asymmetric tables.

r-bizicount 1.3.4
Propagated dependencies: r-texreg@1.39.5 r-rlang@1.1.6 r-pbivnorm@0.6.0 r-numderiv@2016.8-1.1 r-mass@7.3-65 r-formula@1.2-5 r-dharma@0.4.7
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/jmniehaus/bizicount
Licenses: GPL 3+
Build system: r
Synopsis: Bivariate Zero-Inflated Count Models Using Copulas
Description:

Maximum likelihood estimation of copula-based zero-inflated (and non-inflated) Poisson and negative binomial count models, based on the article <doi:10.18637/jss.v109.i01>. Supports Frank and Gaussian copulas. Allows for mixed margins (e.g., one margin Poisson, the other zero-inflated negative binomial), and several marginal link functions. Built-in methods for publication-quality tables using texreg', post-estimation diagnostics using DHARMa', and testing for marginal zero-modification via <doi:10.1177/0962280217749991>. For information on copula regression for count data, see Genest and Nešlehová (2007) <doi:10.1017/S0515036100014963> as well as Nikoloulopoulos (2013) <doi:10.1007/978-3-642-35407-6_11>. For information on zero-inflated count regression generally, see Lambert (1992) <https://www.jstor.org/stable/1269547>. The author acknowledges support by NSF DMS-1925119 and DMS-212324.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
Total results: 30580