Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitates the creation of page layout visualizations in which words are represented as rectangles with sizes relating to the length of the words. Which then is divided in lines and pages for easy overview of up to quite large texts.
This package provides functions to compute generalized eigenvalues and eigenvectors, the generalized Schur decomposition and the generalized Singular Value Decomposition of a matrix pair, using Lapack routines.
This package makes available 50 objective functions for benchmarking the performance of global optimization algorithms.
This package provides geographical faceting functionality for ggplot2'. Geographical faceting arranges a sequence of plots of data for different geographical entities into a grid that preserves some of the geographical orientation.
Scan multiple Git repositories, pull specified files content and process it with large language models. You can summarize the content in specific way, extract information and data, or find answers to your questions about the repositories. The output can be stored in vector database and used for semantic search or as a part of a RAG (Retrieval Augmented Generation) prompt.
Understanding how features influence a specific response variable becomes crucial in classification problems, with applications ranging from medical diagnosis to customer behavior analysis. This packages provides tools to compute such an influence measure grounded on game theory concepts. In particular, the influence measures presented in Davila-Pena, Saavedra-Nieves, and Casas-Méndez (2024) <doi:10.48550/arXiv.2408.02481> can be obtained.
Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.
Estimates generalized additive latent and mixed models using maximum marginal likelihood, as defined in Sorensen et al. (2023) <doi:10.1007/s11336-023-09910-z>, which is an extension of Rabe-Hesketh and Skrondal (2004)'s unifying framework for multilevel latent variable modeling <doi:10.1007/BF02295939>. Efficient computation is done using sparse matrix methods, Laplace approximation, and automatic differentiation. The framework includes generalized multilevel models with heteroscedastic residuals, mixed response types, factor loadings, smoothing splines, crossed random effects, and combinations thereof. Syntax for model formulation is close to lme4 (Bates et al. (2015) <doi:10.18637/jss.v067.i01>) and PLmixed (Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>).
This package contains methods for fitting Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Generalized regression models are common methods for handling data for which assuming Gaussian-distributed errors is not appropriate. For instance, if the response of interest is binary, count, or proportion data, one can instead model the expectation of the response based on an appropriate data-generating distribution. This package provides methods for fitting GLMs and GAMs under Beta regression, Poisson regression, Gamma regression, and Binomial regression (currently GLM only) settings. Models are fit using local scoring algorithms described in Hastie and Tibshirani (1990) <doi:10.1214/ss/1177013604>.
An implementation of maximum simulated likelihood method for the estimation of multinomial logit models with random coefficients as presented by Sarrias and Daziano (2017) <doi:10.18637/jss.v079.i02>. Specifically, it allows estimating models with continuous heterogeneity such as the mixed multinomial logit and the generalized multinomial logit. It also allows estimating models with discrete heterogeneity such as the latent class and the mixed-mixed multinomial logit model.
Add mean comparison annotations to a ggplot'. This package provides an easy way to indicate if two or more groups are significantly different in a ggplot'. Usually you do not need to specify the test method, you only need to tell stat_compare() whether you want to perform a parametric test or a nonparametric test, and stat_compare() will automatically choose the appropriate test method based on your data. For comparisons between two groups, the p-value is calculated by t-test (parametric) or Wilcoxon rank sum test (nonparametric). For comparisons among more than two groups, the p-value is calculated by One-way ANOVA (parametric) or Kruskal-Wallis test (nonparametric).
Interact with the Google Cloud Vision <https://cloud.google.com/vision/> API in R. Part of the cloudyr <https://cloudyr.github.io/> project.
Create graticule lines and labels for maps. Control the creation of lines or tiles by setting their placement (at particular meridians and parallels) and extent (along parallels and meridians). Labels are created independently of lines.
Gradient-Enhanced Kriging as an emulator for computer experiments based on Maximum-Likelihood estimation.
This package provides a simple way to translate text elements in ggplot2 plots using a dictionary-based approach.
Audits ggplot2 visualizations for accessibility issues, misleading practices, and readability problems. Checks for color accessibility concerns including colorblind-unfriendly palettes, misleading scale manipulations such as truncated axes and dual y-axes, text readability issues like small fonts and overlapping labels, and general accessibility barriers. Provides comprehensive audit reports with actionable suggestions for improvement. Color vision deficiency simulation uses methods from the colorspace package Zeileis et al. (2020) <doi:10.18637/jss.v096.i01>. Contrast calculations follow WCAG 2.1 guidelines (W3C 2018 <https://www.w3.org/WAI/WCAG21/Understanding/contrast-minimum>).
This package provides a statistical hypothesis test for conditional independence. Given residuals from a sufficiently powerful regression, it tests whether the covariance of the residuals is vanishing. It can be applied to both discretely-observed functional data and multivariate data. Details of the method can be found in Anton Rask Lundborg, Rajen D. Shah and Jonas Peters (2022) <doi:10.1111/rssb.12544>.
Computational representations of glycan compositions and structures, including details such as linkages, anomers, and substituents. Supports varying levels of monosaccharide specificity (e.g., "Hex" or "Gal") and ambiguous linkages. Provides robust parsing and generation of IUPAC-condensed structure strings. Optimized for vectorized operations on glycan structures, with efficient handling of duplications. As the cornerstone of the glycoverse ecosystem, this package delivers the foundational data structures that power glycomics and glycoproteomics analysis workflows.
This package provides interactive visualisations for exploratory data analysis of high-dimensional datasets. Includes parallel coordinate plots for exploring large datasets with mostly quantitative features, but also stacked one-dimensional visualisations that more effectively show missingness and complex categorical relationships in smaller datasets.
This package contains the implementation of a binary large margin classifier based on Gabriel Graph. References for this method can be found in L.C.B. Torres et al. (2015) <doi:10.1049/el.2015.1644>.
Implementation of spatial graph-theoretic genetic gravity models. The model framework is applicable for other types of spatial flow questions. Includes functions for constructing spatial graphs, sampling and summarizing associated raster variables and building unconstrained and singly constrained gravity models.
Using Australian Bureau of Statistics indices, provides functions that convert historical, nominal statistics to real, contemporary values without worrying about date input quality, performance, or the ABS catalogue.
This package contains many functions useful for monitoring and reporting the results of clinical trials and other experiments in which treatments are compared. LaTeX is used to typeset the resulting reports, recommended to be in the context of knitr'. The Hmisc', ggplot2', and lattice packages are used by greport for high-level graphics.
This is a set of functions to retrieve information about GIMMS NDVI3g files currently available online; download (and re-arrange, in the case of NDVI3g.v0) the half-monthly data sets; import downloaded files from ENVI binary (NDVI3g.v0) or NetCDF format (NDVI3g.v1) directly into R based on the widespread raster package; conduct quality control; and generate monthly composites (e.g., maximum values) from the half-monthly input data. As a special gimmick, a method is included to conveniently apply the Mann-Kendall trend test upon Raster* images, optionally featuring trend-free pre-whitening to account for lag-1 autocorrelation.