Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains ggplot2 geom for plotting brain atlases using simple features. The largest component of the package is the data for the two built-in atlases. Mowinckel & Vidal-Piñeiro (2020) <doi:10.1177/2515245920928009>.
This package provides a variety of multivariable data summary statistics and constructions have been proposed, either to generalize univariable analogs or to exploit multivariable properties. Notable among these are the bivariate peelings surveyed by Green (1981, ISBN:978-0-471-28039-2), the bag-and-bolster plots proposed by Rousseeuw &al (1999) <doi:10.1080/00031305.1999.10474494>, and the minimum spanning trees used by Jolliffe (2002) <doi:10.1007/b98835> to represent high-dimensional relationships among data in a low-dimensional plot. Additionally, biplots of singular value--decomposed tabular data, such as from principal components analysis, make use of vectors, calibrated axes, and other representations of variable elements to complement point markers for case elements; see Gabriel (1971) <doi:10.1093/biomet/58.3.453> and Gower & Harding (1988) <doi:10.1093/biomet/75.3.445> for original proposals. Because they treat the abscissa and ordinate as commensurate or the data elements themselves as point masses or unit vectors, these multivariable tools can be thought of as belonging to geometric data analysis; see Podani (2000, ISBN:90-5782-067-6) for techniques and applications and Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0> for foundations. gggda extends Wickham's (2010) <doi:10.1198/jcgs.2009.07098> layered grammar of graphics with statistical transformation ("stat") and geometric construction ("geom") layers for many of these tools, as well as convenience coordinate systems to emphasize intrinsic geometry of the data.
R-interface to C++ implementation of the rank/score permutation based GSEA test (Subramanian et al 2005 <doi: 10.1073/pnas.0506580102>).
Connecting spatiotemporal exposure to individual and population-level risk via source-to-outcome continuum modeling. The package, methods, and case-studies are described in Messier, Reif, and Marvel (2024) <doi:10.1101/2024.09.23.24314096> and Eccles et al. (2023) <doi:10.1016/j.scitotenv.2022.158905>.
This package contains all the data and functions used in Generalized Linear Models, 2nd edition, by Jeff Gill and Michelle Torres. Examples to create all models, tables, and plots are included for each data set.
Saves a ggplot object into multiple files, each with a layer added incrementally. Generally to be used in presentation slides. Flexible enough to allow different file types for the final complete plot, and intermediate builds.
This package provides probability functions (cumulative distribution and density functions), simulation function (Gumbel copula multivariate simulation) and estimation functions (Maximum Likelihood Estimation, Inference For Margins, Moment Based Estimation and Canonical Maximum Likelihood).
Unsupervised Clustering and Meta-analysis using Gaussian Mixture Copula Models.
This package provides a not-so-comprehensive list of methods for estimating graphon, a symmetric measurable function, from a single or multiple of observed networks. For a detailed introduction on graphon and popular estimation techniques, see the paper by Orbanz, P. and Roy, D.M.(2014) <doi:10.1109/TPAMI.2014.2334607>. It also contains several auxiliary functions for generating sample networks using various network models and graphons.
Identify and visualize individuals with unusual association patterns of genetics and geography using the approach of Chang and Schmid (2023) <doi:10.1101/2023.04.06.535838>. It detects potential outliers that violate the isolation-by-distance assumption using the K-nearest neighbor approach. You can obtain a table of outliers with statistics and visualize unusual geo-genetic patterns on a geographical map. This is useful for landscape genomics studies to discover individuals with unusual geography and genetics associations from a large biological sample.
Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with gips approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>. Documentation about gips is provided via its website at <https://przechoj.github.io/gips/> and the paper by Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).
This package provides functions to develop simulated continuous data (e.g., gene expression) from a sigma covariance matrix derived from a graph structure in igraph objects. Intended to extend mvtnorm to take igraph structures rather than sigma matrices as input. This allows the use of simulated data that correctly accounts for pathway relationships and correlations. This allows the use of simulated data that correctly accounts for pathway relationships and correlations. Here we present a versatile statistical framework to simulate correlated gene expression data from biological pathways, by sampling from a multivariate normal distribution derived from a graph structure. This package allows the simulation of biological pathways from a graph structure based on a statistical model of gene expression. For example methods to infer biological pathways and gene regulatory networks from gene expression data can be tested on simulated datasets using this framework. This also allows for pathway structures to be considered as a confounding variable when simulating gene expression data to test the performance of genomic analyses.
The goal of gnonadd is to simplify workflows in the analysis of non-additive effects of sequence variants. This includes variance effects (Ivarsdottir et. al (2017) <doi:10.1038/ng.3928>), correlation effects, interaction effects and dominance effects. The package also includes convenience functions for visualization.
Mapping and spatial data manipulation tools - in particular drawing thematic maps with nice looking legends, and aggregation of point data to polygons.
Quantifying systematic heterogeneity in meta-analysis using R. The M statistic aggregates heterogeneity information across multiple variants to, identify systematic heterogeneity patterns and their direction of effect in meta-analysis. It's primary use is to identify outlier studies, which either show "null" effects or consistently show stronger or weaker genetic effects than average across, the panel of variants examined in a GWAS meta-analysis. In contrast to conventional heterogeneity metrics (Q-statistic, I-squared and tau-squared) which measure random heterogeneity at individual variants, M measures systematic (non-random) heterogeneity across multiple independently associated variants. Systematic heterogeneity can arise in a meta-analysis due to differences in the study characteristics of participating studies. Some of the differences may include: ancestry, allele frequencies, phenotype definition, age-of-disease onset, family-history, gender, linkage disequilibrium and quality control thresholds. See <https://magosil86.github.io/getmstatistic/> for statistical statistical theory, documentation and examples.
This package provides functions and a graphical user interface for graphical described multiple test procedures.
This package provides probability density functions and sampling algorithms for three key distributions from the General Unimodal Distribution (GUD) family: the Flexible Gumbel (FG) distribution, the Double Two-Piece (DTP) Student-t distribution, and the Two-Piece Scale (TPSC) Student-t distribution. Additionally, this package includes a function for Bayesian linear modal regression, leveraging these three distributions for model fitting. The details of the Bayesian modal regression model based on the GUD family can be found at Liu, Huang, and Bai (2024) <doi:10.1016/j.csda.2024.108012>.
Visualise the results of F test to compare two variances, Student's t-test, test of equal or given proportions, Pearson's chi-squared test for count data and test for association/correlation between paired samples.
This package provides multiple palettes based on pride flags with tailored themes.
This package provides tools for efficient processing of large, whole genome genotype data sets in variant call format (VCF). It includes several functions to calculate commonly used population genomic metrics and a method for reference panel free genotype imputation, which is described in the preprint Gurke & Mayer (2024) <doi:10.22541/au.172515591.10119928/v1>.
Scrapes Google Citation pages and creates data frames of citations over time.
This package provides a toolkit with functions to fit, plot, summarize, and apply Generalized Dissimilarity Models. Mokany K, Ware C, Woolley SNC, Ferrier S, Fitzpatrick MC (2022) <doi:10.1111/geb.13459> Ferrier S, Manion G, Elith J, Richardson K (2007) <doi:10.1111/j.1472-4642.2007.00341.x>.
This package implements a flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology following Cannon (2010) <doi:10.1002/hyp.7506>.
Estimation of the effect of each income source on income inequalities based on the decomposition of Lerman and Yitzhaki (1985) <doi:10.2307/1928447>.