Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
Based on large margin principle, this package performs feature selection methods: "IM4E"(Iterative Margin-Maximization under Max-Min Entropy Algorithm); "Immigrate"(Iterative Max-Min Entropy Margin-Maximization with Interaction Terms Algorithm); "BIM"(Boosted version of IMMIGRATE algorithm); "Simba"(Iterative Search Margin Based Algorithm); "LFE"(Local Feature Extraction Algorithm). This package also performs prediction for the above feature selection methods.
Pipeline for Genome-Wide Association Study using Multi-Locus Mixed Model from Segura V, Vilhjálmsson BJ et al. (2012) <doi:10.1038/ng.2314>. The pipeline include detection of associated SNPs with MLMM, model selection by lowest eBIC
and p-value threshold, estimation of the effects of the SNPs in the selected model and graphical functions.
Implementation of the Monothetic Clustering algorithm (Chavent, 1998 <doi:10.1016/S0167-8655(98)00087-7>) on continuous data sets. A lot of extensions are included in the package, including applying Monothetic clustering on data sets with circular variables, visualizations with the results, and permutation and cross-validation based tests to support the decision on the number of clusters.
Fit Maximum Entropy Optimality Theory models to data sets, generate the predictions made by such models for novel data, and compare the fit of different models using a variety of metrics. The package is described in Mayer, C., Tan, A., Zuraw, K. (in press) <https://sites.socsci.uci.edu/~cjmayer/papers/cmayer_et_al_maxent_ot_accepted.pdf>.
This package provides a graphical user interface to apply an advanced method optimization algorithm to various sampling and analysis instruments. This includes generating experimental designs, uploading and viewing data, and performing various analyses to determine the optimal method. Details of the techniques used in this package are published in Gamble, Granger, & Mannion (2024) <doi:10.1021/acs.analchem.3c05763>.
Use optimization to estimate weights that balance covariates for binary, multinomial, and continuous treatments in the spirit of Zubizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be specified for each covariate. In addition, sampling weights can be estimated that allow a sample to generalize to a population specified with given target moments of covariates.
Matches cases to controls based on genotype principal components (PC). In order to produce better results, matches are based on the weighted distance of PCs where the weights are equal to the % variance explained by that PC. A weighted Mahalanobis distance metric (Kidd et al. (1987) <DOI:10.1016/0031-3203(87)90066-5>) is used to determine matches.
The Prize-Collecting Steiner Tree problem asks to find a subgraph connecting a given set of vertices with the most expensive nodes and least expensive edges. Since it is proven to be NP-hard, exact and efficient algorithm does not exist. This package provides convenient functionality for obtaining an approximate solution to this problem using loopy belief propagation algorithm.
Personalize drug regimens using individual pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) profiles. By combining therapeutic drug monitoring (TDM) data with a population model, posologyr offers accurate posterior estimates and helps compute optimal individualized dosing regimens. The empirical Bayes estimates are computed following the method described by Kang et al. (2012) <doi:10.4196/kjpp.2012.16.2.97>.
Modifies the distance matrix obtained from data with batch effects, so as to improve the performance of sample pattern detection, such as clustering, dimension reduction, and construction of networks between subjects. The method has been published in Bioinformatics (Fei et al, 2018, <doi:10.1093/bioinformatics/bty117>). Also available on GitHub
<https://github.com/tengfei-emory/QuantNorm>
.
This package provides indices and tools for directed acyclic graphs (DAGs), particularly DAG representations of intermittent streams. A detailed introduction to the package can be found in the publication: "Non-perennial stream networks as directed acyclic graphs: The R-package streamDAG
" (Aho et al., 2023) <doi:10.1016/j.envsoft.2023.105775>, and in the introductory package vignette.
This package implements Bayesian inference in accelerated failure time (AFT) models for right-censored survival times assuming a log-logistic distribution. Details of the variational Bayes algorithms, with and without shared frailty, are described in Xian et al. (2024) <doi:10.1007/s11222-023-10365-6> and Xian et al. (2024) <doi:10.48550/arXiv.2408.00177>
, respectively.
Estimation of mean squared prediction error of a small area predictor is provided. In particular, the recent method of Simple, Unified, Monte-Carlo Assisted approach for the mean squared prediction error estimation of small area predictor is provided. We also provide other existing methods of mean squared prediction error estimation such as jackknife method for the mixed logistic model.
Data structures and methods to work with web tracking data. The functions cover data preprocessing steps, enriching web tracking data with external information and methods for the analysis of digital behavior as used in several academic papers (e.g., Clemm von Hohenberg et al., 2023 <doi:10.17605/OSF.IO/M3U9P>; Stier et al., 2022 <doi:10.1017/S0003055421001222>).
This package provides functionalities to translate gene or protein identifiers between state-of-art biological databases: CARD (<https://card.mcmaster.ca/>), NCBI Protein, Nucleotide and Gene (<https://www.ncbi.nlm.nih.gov/>), UniProt
(<https://www.uniprot.org/>) and KEGG (<https://www.kegg.jp>). Also offers complementary functionality like NCBI identical proteins or UniProt
similar genes clusters retrieval.
This package contains the experimental data and a complete executable transcript (vignette) of the analysis of the HCT116 genetic interaction matrix presented in the paper "Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping" by C. Laufer, B. Fischer, M. Billmann, W. Huber, M. Boutros; Nature Methods (2013) 10:427-31. doi: 10.1038/nmeth.2436.
This package provides a suite of helper functions for checking and manipulating TCGA data including data obtained from the curatedTCGAData
experiment package. These functions aim to simplify and make working with TCGA data more manageable. Exported functions include those that import data from flat files into Bioconductor objects, convert row annotations, and identifier translation via the GDC API.
The package AlphaBeta
is a computational method for estimating epimutation rates and spectra from high-throughput DNA methylation data in plants. The method has been specifically designed to:
analyze germline epimutations in the context of multi-generational mutation accumulation lines;
analyze somatic epimutations in the context of plant development and aging.
This package provides an R interface to the nanoarrow
C library and the Apache Arrow application binary interface. Functions to import and export ArrowArray
, ArrowSchema
, and ArrowArrayStream
C structures to and from R objects are provided alongside helpers to facilitate zero-copy data transfer among R bindings to libraries implementing the Arrow C data interface.
Obtain overlapping clustering models for object-by-variable data matrices using the Additive Profile Clustering (ADPROCLUS) method. Also contains the low dimensional ADPROCLUS method for simultaneous dimension reduction and overlapping clustering. For reference see Depril, Van Mechelen, Mirkin (2008) <doi:10.1016/j.csda.2008.04.014> and Depril, Van Mechelen, Wilderjans (2012) <doi:10.1007/s00357-012-9112-5>.
Transform newswire and earnings call transcripts as PDF obtained from Nexis Uni to R data frames. Various newswires and FairDisclosure
earnings call formats are supported. Further, users can apply several pre-defined dictionaries on the data based on Graffin et al. (2016)<doi:10.5465/amj.2013.0288> and Gamache et al. (2015)<doi:10.5465/amj.2013.0377>.
This extension of the pattern-oriented modeling framework of the poems package provides a collection of modules and functions customized for modeling disease transmission on a population scale in a spatiotemporally explicit manner. This includes seasonal time steps, dispersal functions that track disease state of dispersers, results objects that store disease states, and a population simulator that includes disease dynamics.
An implementation of the nonnegative garrote method that incorporates hierarchical relationships among variables. The core function, HiGarrote()
, offers an automated approach for analyzing experiments while respecting hierarchical structures among effects. For methodological details, refer to Yu and Joseph (2024) <doi:10.48550/arXiv.2411.01383>
. This work is supported by U.S. National Science Foundation grant DMS-2310637.