Long non-coding RNAs identification and analysis. Default models are trained with human, mouse and wheat datasets by employing SVM. Features are based on intrinsic composition of sequence, EIIP value (electron-ion interaction pseudopotential), and secondary structure. This package can also extract other classic features and build new classifiers. Reference: Han S., et al. (2019) <doi:10.1093/bib/bby065>.
Set of utility functions to interact with WeMo
Switch', a smart plug that can be remotely controlled via wifi. The provided functions make it possible to turn one or more WeMo
Switch plugs on and off in a scriptable fashion. More information about WeMo
Switch can be found at <http://www.belkin.com/us/p/P-F7C027/>.
Stand-alone HTTP capable R-package repository, that fully supports R's install.packages()
and available.packages()
. It also contains API endpoints for end-users to add/update packages. This package can supplement miniCRAN
', which has functions for maintaining a local (partial) copy of CRAN'. Current version is bare-minimum without any access-control or much security.
Simulation and estimation for Neyman-Scott spatial cluster point process models and their extensions, based on the methodology in Tanaka, Ogata, and Stoyan (2008) <doi:10.1002/bimj.200610339>. To estimate parameters by the simplex method, parallel computation using OpenMP
application programming interface is available. For more details see Tanaka, Saga and Nakano <doi:10.18637/jss.v098.i06>.
Social media sites often embed cards when links are shared, based on metadata in the Open Graph Protocol (<https://ogp.me/>). This supports extracting that metadata from a website. It further allows for the creation of tags to add to a website to support the Open Graph Protocol and provides a list of the standard tags and their required properties.
Ordnance Survey ('OS') is the national mapping agency for Great Britain and produces a large variety of mapping and geospatial products. Much of OS's data is available via the OS Data Hub <https://osdatahub.os.uk/>, a platform that hosts both free and premium data products. osdatahub provides a user-friendly way to access, query, and download these data.
Propagation of uncertainty using higher-order Taylor expansion and Monte Carlo simulation. Calculations of propagated uncertainties are based on matrix calculus including covariance structure according to Arras 1998 <doi:10.3929/ethz-a-010113668> (first order), Wang & Iyer 2005 <doi:10.1088/0026-1394/42/5/011> (second order) and BIPM Supplement 1 (Monte Carlo) <doi:10.59161/JCGM101-2008>.
Flexible stochastic tree ensemble software. Robust implementations of Bayesian Additive Regression Trees (BART) Chipman, George, McCulloch
(2010) <doi:10.1214/09-AOAS285> for supervised learning and Bayesian Causal Forests (BCF) Hahn, Murray, Carvalho (2020) <doi:10.1214/19-BA1195> for causal inference. Enables model serialization and parallel sampling and provides a low-level interface for custom stochastic forest samplers.
Fits semiparametric linear and multilevel models with non-parametric additive Bayesian additive regression tree (BART; Chipman, George, and McCulloch
(2010) <doi:10.1214/09-AOAS285>) components and Stan (Stan Development Team (2021) <https://mc-stan.org/>) sampled parametric ones. Multilevel models can be expressed using lme4 syntax (Bates, Maechler, Bolker, and Walker (2015) <doi:10.18637/jss.v067.i01>).
This is a collection of various kinds of data with broad uses for teaching. My students, and academics like me who teach the same topics I teach, should find this useful if their teaching workflow is also built around the R programming language. The applications are multiple but mostly cluster on topics of statistical methodology, international relations, and political economy.
This package provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
This package provides a container for data used by the usmap package. The data used by usmap has been extracted into this package so that the file size of the usmap package can be reduced greatly. The data in this package will be updated roughly once per year as new map data files are provided by the US Census Bureau.
Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here <doi:10.1007/s11222-016-9670-1>). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.
Simplifies functions assess normality for bivariate and multivariate statistical techniques. Includes functions designed to replicate plots and tables that would result from similar calls in SPSS', including hst()
, box()
, qq()
, tab()
, cormat()
, and residplot()
. Also includes simplified formulae, such as mode()
, scatter()
, p.corr()
, ow.anova()
, and rm.anova()
.
Pathifier is an algorithm that infers pathway deregulation scores for each tumor sample on the basis of expression data. This score is determined, in a context-specific manner, for every particular dataset and type of cancer that is being investigated. The algorithm transforms gene-level information into pathway-level information, generating a compact and biologically relevant representation of each sample.
The complexity of high-throughput quantitative omics experiments often leads to low replicates numbers and many missing values. We implemented a new test to simultaneously consider missing values and quantitative changes, which we combined with well-performing statistical tests for high confidence detection of differentially regulated features. The package contains functions to run the test and to visualize the results.
This package provides functions for annotation-agnostic differential expression analysis of RNA-seq data. Two implementations of the DER Finder approach are included in this package:
single base-level F-statistics and
DER identification at the expressed regions-level.
The DER Finder approach can also be used to identify differentially bounded ChIP-seq
peaks.
This package provides .C64()
, an enhanced version of .C()
and .Fortran()
from the R foreign function interface. .C64()
supports long vectors, arguments of type 64-bit integer, and provides a mechanism to avoid unnecessary copies of read-only and write-only arguments. This makes it a convenient and fast interface to C/C++ and Fortran code.
Application of reinsurance treaties to claims portfolios. The package creates a class Claims whose objective is to store claims and premiums, on which different treaties can be applied. A statistical analysis can then be applied to measure the impact of reinsurance, producing a table or graphical output. This package can be used for estimating the impact of reinsurance on several portfolios or for pricing treaties through statistical analysis. Documentation for the implemented methods can be found in "Reinsurance: Actuarial and Statistical Aspects" by Hansjöerg Albrecher, Jan Beirlant, Jozef L. Teugels (2017, ISBN: 978-0-470-77268-3) and "REINSURANCE: A Basic Guide to Facultative and Treaty Reinsurance" by Munich Re (2010) <https://www.munichre.com/site/mram/get/documents_E96160999/mram/assetpool.mr_america/PDFs/3_Publications/reinsurance_basic_guide.pdf>.
Assists in the set-up of algorithms for Bayesian inference of vector autoregressive (VAR) and error correction (VEC) models. Functions for posterior simulation, forecasting, impulse response analysis and forecast error variance decomposition are largely based on the introductory texts of Chan, Koop, Poirier and Tobias (2019, ISBN: 9781108437493), Koop and Korobilis (2010) <doi:10.1561/0800000013> and Luetkepohl (2006, ISBN: 9783540262398).
Box-Cox-type transformations for linear and logistic models with random effects using non-parametric profile maximum likelihood estimation, as introduced in Almohaimeed (2018) <http://etheses.dur.ac.uk/12831/> and Almohaimeed and Einbeck (2022) <doi:10.1177/1471082X20966919>. The main functions are optim.boxcox()
for linear models with random effects and boxcoxtype()
for logistic models with random effects.
Compute ranking and rating based on competition results. Methods of different nature are implemented: with fixed Head-to-Head structure, with variable Head-to-Head structure and with iterative nature. All algorithms are taken from the book Whoâ s #1?: The science of rating and ranking by Amy N. Langville and Carl D. Meyer (2012, ISBN:978-0-691-15422-0).
Computes discrete fast Fourier transform of river discharge data and the derived metrics. The methods are described in J. L. Sabo, D. M. Post (2008) <doi:10.1890/06-1340.1> and J. L. Sabo, A. Ruhi, G. W. Holtgrieve, V. Elliott, M. E. Arias, P. B. Ngor, T. A. Räsänsen, S. Nam (2017) <doi:10.1126/science.aao1053>.
Given a set of predictive quantiles from a distribution, estimate the distribution and create `d`, `p`, `q`, and `r` functions to evaluate its density function, distribution function, and quantile function, and generate random samples. On the interior of the provided quantiles, an interpolation method such as a monotonic cubic spline is used; the tails are approximated by a location-scale family.