We innovatively defined a pathway mutation accumulate perturbation score (PMAPscore) to reflect the position and the cumulative effect of the genetic mutations at the pathway level. Based on the PMAPscore of pathways, identified prognosis-related pathways altered by somatic mutation and predict immunotherapy efficacy by constructing a multiple-pathway-based risk model (Tarca, Adi Laurentiu et al (2008) <doi:10.1093/bioinformatics/btn577>).
Generates predicted stage change days for an insect, based on daily temperatures and development rate parameters, as developed by Pollard (2014) <http://mural.maynoothuniversity.ie/view/ethesisauthor/Pollard=3ACiaran_P=2E=3A=3A.html>. A few example datasets are included and implemented for P. vulgatissima, the blue willow beetle, but the approach can be readily applied to other species that display similar behaviour.
Construct sketches of data via random subspace embeddings. For more details, see the following papers. Lee, S. and Ng, S. (2022). "Least Squares Estimation Using Sketched Data with Heteroskedastic Errors," Proceedings of the 39th International Conference on Machine Learning (ICML22), 162:12498-12520. Lee, S. and Ng, S. (2020). "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, 12(1): 45â 80.
This package implements a suite of sensitivity analysis tools that extends the traditional omitted variable bias framework and makes it easier to understand the impact of omitted variables in regression models, as discussed in Cinelli, C. and Hazlett, C. (2020), "Making Sense of Sensitivity: Extending Omitted Variable Bias." Journal of the Royal Statistical Society, Series B (Statistical Methodology) <doi:10.1111/rssb.12348>.
Convert text (and text in R objects) to Mocking SpongeBob
case <https://knowyourmeme.com/memes/mocking-spongebob> and show them off in fun ways. CoNVErT
TexT
(AnD
TeXt
In r ObJeCtS
) To MOCkINg
SpoNgebOb
CAsE
<https://knowyourmeme.com/memes/mocking-spongebob> aND
shOw
tHem
OFf IN Fun WayS
.
This package provides an R interface for interacting with the Tableau Server. It allows users to perform various operations such as publishing workbooks, refreshing data extracts, and managing users using the Tableau REST API (see <https://help.tableau.com/current/api/rest_api/en-us/REST/rest_api_ref.htm> for details). Additionally, it includes functions to perform manipulations on local Tableau workbooks.
DNAfusion can identify gene fusions such as EML4-ALK based on paired-end sequencing results. This package was developed using position deduplicated BAM files generated with the AVENIO Oncology Analysis Software. These files are made using the AVENIO ctDNA
surveillance kit and Illumina Nextseq 500 sequencing. This is a targeted hybridization NGS approach and includes ALK-specific but not EML4-specific probes.
This package provides functions for inferring continuous, branching lineage structures in low-dimensional data. Slingshot was designed to model developmental trajectories in single-cell RNA sequencing data and serve as a component in an analysis pipeline after dimensionality reduction and clustering. It is flexible enough to handle arbitrarily many branching events and allows for the incorporation of prior knowledge through supervised graph construction.
PiGX RNAseq is an analysis pipeline for preprocessing and reporting for RNA sequencing experiments. It is easy to use and produces high quality reports. The inputs are reads files from the sequencing experiment, and a configuration file which describes the experiment. In addition to quality control of the experiment, the pipeline produces a differential expression report comparing samples in an easily configurable manner.
juliex is a concurrent executor for Rust futures. It is implemented as a threadpool executor using a single, shared queue. Algorithmically, it is very similar to the Threadpool executor provided by the futures crate. The main difference is that juliex uses a crossbeam channel and performs a single allocation per spawned future, whereas the futures Threadpool uses std concurrency primitives and multiple allocations.
The Readline library provides a set of functions for use by applications that allow users to edit command lines as they are typed in. Both Emacs and vi editing modes are available. The Readline library includes additional functions to maintain a list of previously-entered command lines, to recall and perhaps reedit those lines, and perform csh-like history expansion on previous commands.
Implementations of algorithms for data analysis based on the rough set theory (RST) and the fuzzy rough set theory (FRST). We not only provide implementations for the basic concepts of RST and FRST but also popular algorithms that derive from those theories. The methods included in the package can be divided into several categories based on their functionality: discretization, feature selection, instance selection, rule induction and classification based on nearest neighbors. RST was introduced by ZdzisÅ aw Pawlak in 1982 as a sophisticated mathematical tool to model and process imprecise or incomplete information. By using the indiscernibility relation for objects/instances, RST does not require additional parameters to analyze the data. FRST is an extension of RST. The FRST combines concepts of vagueness and indiscernibility that are expressed with fuzzy sets (as proposed by Zadeh, in 1965) and RST.
This package provides a brotli compressor and decompressor that with an interface avoiding the rust stdlib. This makes it suitable for embedded devices and kernels. It is designed with a pluggable allocator so that the standard lib's allocator may be employed. The default build also includes a stdlib allocator and stream interface. Disable this with --features=no-stdlib. All included code is safe.
This is a slightly modified version of the standalone Rmath library from R, built to be used with the Rmath.jl
Julia package. The main difference is that it is built to allow defining custom random number generating functions via C function pointers (see include/callback.h
). When using the library, these should be defined before calling any of the random functions.
Leveraging Monte Carlo simulations, this package provides tools for diagnosing regression models. It implements a parametric bootstrap framework to compute statistics, generates diagnostic envelopes to assess goodness-of-fit, and evaluates type I error control for Wald tests. By simulating data under the assumption that the model is true, it helps to identify model mis-specifications and enhances the reliability of the model inferences.
The bupaverse is an open-source, integrated suite of R-packages for handling and analysing business process data, developed by the Business Informatics research group at Hasselt University, Belgium. Profoundly inspired by the tidyverse package, the bupaverse package is designed to facilitate the installation and loading of multiple bupaverse packages in a single step. Learn more about bupaverse at the <https://bupar.net> homepage.
This package provides methods for the group testing identification problem: 1) Operating characteristics (e.g., expected number of tests) for commonly used hierarchical and array-based algorithms, and 2) Optimal testing configurations for these same algorithms. Methods for the group testing estimation problem: 1) Estimation and inference procedures for an overall prevalence, and 2) Regression modeling for commonly used hierarchical and array-based algorithms.
Reads demographic data from a variety of public data sources, extracting and harmonizing variables useful for the study of childfree individuals. The identification of childfree individuals and those with other family statuses uses Neal & Neal's (2024) "A Framework for Studying Adults who Neither have Nor Want Children" <doi:10.1177/10664807231198869>; A pre-print is available at <doi:10.31234/osf.io/fa89m>.
Reads European Data Format files EDF and EDF+, see <http://www.edfplus.info>, BioSemi
Data Format files BDF, see <http://www.biosemi.com/faq/file_format.htm>, and BDF+ files, see <http://www.teuniz.net/edfbrowser/bdfplus%20format%20description.html>. The files are read in two steps: first the header is read and then the signals (using the header object as a parameter).
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>
).
Understanding how features influence a specific response variable becomes crucial in classification problems, with applications ranging from medical diagnosis to customer behavior analysis. This packages provides tools to compute such an influence measure grounded on game theory concepts. In particular, the influence measures presented in Davila-Pena, Saavedra-Nieves, and Casas-Méndez (2024) <doi:10.48550/arXiv.2408.02481>
can be obtained.
The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 <doi:10.3389/fevo.2021.588292>) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.
Tests one hypothesis with several test statistics, correcting for multiple testing. The central function in the package is testtwice()
. In a sensitivity analysis, the method has the largest design sensitivity of its component tests. The package implements the method and examples in Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.
ExperimentHubData
package for the mulea comprehensive overrepresentation and functional enrichment analyser R package. Here we provide ontologies (gene sets) in a data.frame for 27 different organisms, ranging from Escherichia coli to human, all acquired from publicly available data sources. Each ontology is provided with multiple gene and protein identifiers. Please see the NEWS file for a list of changes in each version.