This package provides the functionality to write LaTeX
code from within R without having to learn LaTeX
. Functionality also exists to create HTML and Markdown code. While the functionality still exists to write complete documents with lazyWeave
, it is generally easier to do so with with markdown and knitr. lazyWeave's
main strength now is the ability to design custom and complex tables for reporting results.
Simulating data and fitting multi-species N-mixture models using nimble'. Includes features for handling zero-inflation and temporal correlation, Bayesian inference, model diagnostics, parameter estimation, and predictive checks. Designed for ecological studies with zero-altered or time-series data. Mimnagh, N., Parnell, A., Prado, E., & Moral, R. A. (2022) <doi:10.1007/s10651-022-00542-7>. Royle, J. A. (2004) <doi:10.1111/j.0006-341X.2004.00142.x>.
Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991<doi:10.1214/aos/1176348396>). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987)<doi:10.1080/01621459.1987.10478458>. The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.
The detection of worrying approximate collinearity in a multiple linear regression model is a problem addressed in all existing statistical packages. However, we have detected deficits regarding to the incorrect treatment of qualitative independent variables and the role of the intercept of the model. The objective of this package is to correct these deficits. In this package will be available detection and treatment techniques traditionally used as the recently developed.
Supplemental functions and data for OpenIntro
resources, which includes open-source textbooks and resources for introductory statistics (<https://www.openintro.org/>). The package contains datasets used in our open-source textbooks along with custom plotting functions for reproducing book figures. Note that many functions and examples include color transparency; some plotting elements may not show up properly (or at all) when run in some versions of Windows operating system.
Estimate sample size based on precision rather than power. precisely is a study planning tool to calculate sample size based on precision. Power calculations are focused on whether or not an estimate will be statistically significant; calculations of precision are based on the same principles as power calculation but turn the focus to the width of the confidence interval. precisely is based on the work of Rothman and Greenland (2018).
This package provides a function kitten()
which creates cute little packages which pass R package checks. This sets it apart from package.skeleton()
which it calls, and which leaves imperfect files behind. As this is not exactly helpful for beginners, kitten()
offers an alternative. Unit test support can be added via the tinytest package (if present), and documentation-creation support can be added via roxygen2 (if present).
This package provides functions related to multivariate measures of independence and ICA: -estimate independent components by minimizing distance covariance; -conduct a test of mutual independence based on distance covariance; -estimate independent components via infomax (a popular method but generally performs poorer than mdcovica, ProDenICA
, and/or fastICA
, but is useful for comparisons); -order indepedent components by skewness; -match independent components from multiple estimates; -other functions useful in ICA.
Econometric estimation of simultaneous systems of linear and nonlinear equations using Ordinary Least Squares (OLS), Weighted Least Squares (WLS), Seemingly Unrelated Regressions (SUR), Two-Stage Least Squares (2SLS), Weighted Two-Stage Least Squares (W2SLS), and Three-Stage Least Squares (3SLS) as suggested, e.g., by Zellner (1962) <doi:10.2307/2281644>, Zellner and Theil (1962) <doi:10.2307/1911287>, and Schmidt (1990) <doi:10.1016/0304-4076(90)90127-F>.
RStudio addin which provides a GUI to visualize and analyse networks. After finishing a session, the code to produce the plot is inserted in the current script. Alternatively, the function SNAhelperGadget()
can be used directly from the console. Additional addins include the Netreader()
for reading network files, Netbuilder()
to create small networks via point and click, and the Componentlayouter()
to layout networks with many components manually.
If a procedure consists of several stages and there are several models that can be selected for each stage, uncertainty of the procedure can be decomposed by stages or models. This package includes the ANOVA-based method, the cumulative uncertainty-based method, and the balanced decomposition method. Yongdai Kim et al. (2019) <doi:10.1016/j.hydroa.2019.100024> is a related paper which is accessible via the URL below.
Offers a comprehensive set of assertion tests to help users validate the integrity of their data. These tests can be used to check for specific conditions or properties within a dataset and help ensure that data is accurate and reliable. The package is designed to make it easy to add quality control checks to data analysis workflows and to aid in identifying and correcting any errors or inconsistencies in data.
Read from, interogate, and write to Wikidata <https://www.wikidata.org> - the multilingual, interdisciplinary, semantic knowledgebase. Includes functions to: read from wikidata (single items, properties, or properties); query wikidata (retrieving all items that match a set of criterial via Wikidata SPARQL query service); write to Wikidata (adding new items or statements via QuickStatements
); and handle and manipulate Wikidata objects (as lists and tibbles). Uses the Wikidata and Quickstatements APIs.
hoodscanR
is an user-friendly R package providing functions to assist cellular neighborhood analysis of any spatial transcriptomics data with single-cell resolution. All functions in the package are built based on the SpatialExperiment
object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. The package can result in cell-level neighborhood annotation output, along with funtions to perform neighborhood colocalization analysis and neighborhood-based cell clustering.
The software uses the copy number segments from a text file and identifies all chromosome arms that are globally altered and computes various genome-wide scores. The following HRD scores (characteristic of BRCA-mutated cancers) are included: LST, HR-LOH, nLST
and gLOH
. the package is tailored for the ThermoFisher
Oncoscan assay analyzed with their Chromosome Alteration Suite (ChAS
) but can be adapted to any input.
This package performs Principal Components Analysis (also known as PCA) dimensionality reduction in the context of a linear regression. In most cases, PCA dimensionality reduction is performed independent of the response variable for a regression. This captures the majority of the variance of the model's predictors, but may not actually be the optimal dimensionality reduction solution for a regression against the response variable. An alternative method, optimized for a regression against the response variable, is to use both PCA and a relative importance measure. This package applies PCA to a given data frame of predictors, and then calculates the relative importance of each PCA factor against the response variable. It outputs ordered factors that are optimized for model fit. By performing dimensionality reduction with this method, an individual can achieve a the same r-squared value as performing just PCA, but with fewer PCA factors. References: Yuri Balasanov (2017) <https://ilykei.com>.
The goal of andurinha is provide a fast and friendly way to process spectroscopic data. It is intended for processing several spectra of samples with similar composition (tens to hundreds of spectra). It compiles spectroscopy data files, produces standardized and second derivative spectra, finds peaks and allows to select the most significant ones based on the second derivative/absorbance sum spectrum. It also provides functions for graphic evaluation of the outputs.
This package provides functions are provided to read and convert AIFF audio files to WAVE (WAV) format. This supports, for example, use of the tuneR
package, which does not currently handle AIFF files. The AIFF file format is defined in <https://web.archive.org/web/20080125221040/http://www.borg.com/~jglatt/tech/aiff.htm> and <https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf>
.
This package provides tools to compute the center of gravity and moment of inertia tensor of any flying bird. The tools function by modeling a bird as a composite structure of simple geometric objects. This requires detailed morphological measurements of bird specimens although those obtained for the associated paper have been included in the package for use. Refer to the vignettes and supplementary material for detailed information on the package function.
Spatial modeling of energy balance and actual evapotranspiration using satellite images and meteorological data. Options of satellite are: Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS. Respectively spatial resolutions are 30, 100, 10 and 250 meters. User can use data from a single meteorological station or a grid of meteorological stations (using any spatial interpolation method). Silva, Teixeira, and Manzione (2019) <doi:10.1016/j.envsoft.2019.104497>.
Implement in R interactive Circos-like visualizations of genomic data, to map information such as genetic variants, genomic fusions and aberrations to a circular genome, as proposed by the JavaScript
library BioCircos.js
', based on the JQuery and D3 technologies. The output is by default displayed in stand-alone HTML documents or in the RStudio viewer pane. Moreover it can be integrated in R Markdown documents and Shiny applications.
Simulates time-to-event data with type I right censoring using two methods: the inverse CDF method and our proposed memoryless method. The latter method takes advantage of the memoryless property of survival and simulates a separate distribution between change-points. We include two parametric distributions: exponential and Weibull. Inverse CDF method draws on the work of Rainer Walke (2010), <https://www.demogr.mpg.de/papers/technicalreports/tr-2010-003.pdf>.
This package provides a graphical user interface with an integrated diagrammer for latent variables from the lavaan package. It offers two core functions: first, lavaangui()
launches a web application that allows users to specify models by drawing path diagrams, fitting them, assessing model fit, and more; second, plot_lavaan()
creates interactive path diagrams from models specified in lavaan'. Karch (2024) <doi: 10.31234/osf.io/f4ary> contains a tutorial.
This package provides a nature-inspired metaheuristic algorithm based on the echolocation behavior of microbats that uses frequency tuning to optimize problems in both continuous and discrete dimensions. This R package makes it easy to implement the standard bat algorithm on any user-supplied function. The algorithm was first developed by Xin-She Yang in 2010 (<DOI:10.1007/978-3-642-12538-6_6>, <DOI:10.1109/CINTI.2014.7028669>).