This package provides a function that behaves nearly as base::source()
but implements a caching mechanism on disk, project based. It allows to quasi source()
R scripts that gather data but can fail or consume to much time to respond even if nothing new is expected. It comes with tools to check and execute on demand or when cache is invalid the script.
Import data from the STATcube REST API or from the open data portal of Statistics Austria. This package includes a client for API requests as well as parsing utilities for data which originates from STATcube'. Documentation about STATcubeR
is provided by several vignettes included in the package as well as on the public pkgdown page at <https://statistikat.github.io/STATcubeR/>
.
This package provides a programmatic interface in R for the US Department of Transportation (DOT) National Highway Transportation Safety Administration (NHTSA) vehicle identification number (VIN) API, located at <https://vpic.nhtsa.dot.gov/api/>. The API can decode up to 50 vehicle identification numbers in one call, and provides manufacturer information about the vehicles, including make, model, model year, and gross vehicle weight rating (GVWR).
This package provides extensive functionality for comparing results obtained by different methods for differential expression analysis of RNAseq data. It also contains functions for simulating count data. Finally, it provides convenient interfaces to several packages for performing the differential expression analysis. These can also be used as templates for setting up and running a user-defined differential analysis workflow within the framework of the package.
This R package makes use of the exhaustive RESTful Web service API that has been implemented for the Cellabase database. It enable researchers to query and obtain a wealth of biological information from a single database saving a lot of time. Another benefit is that researchers can easily make queries about different biological topics and link all this information together as all information is integrated.
bioassayR is a computational tool that enables simultaneous analysis of thousands of bioassay experiments performed over a diverse set of compounds and biological targets. Unique features include support for large-scale cross-target analyses of both public and custom bioassays, generation of high throughput screening fingerprints (HTSFPs), and an optional preloaded database that provides access to a substantial portion of publicly available bioactivity data.
This package provides a minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates.
This package provides a graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the Shiny web application framework and works with the output of MCMC programs written in any programming language (and has extended functionality for Stan models fit using the rstan
and rstanarm
packages).
This package provides tools to convert plot function calls (using expression or formula) to grob
or ggplot
objects that are compatible with the grid
and ggplot2
environment. With this package, we are able to e.g. use cowplot
to align plots produced by base
graphics, grid
, lattice
, vcd
etc. by converting them to ggplot
objects.
The ropenblas package (<https://prdm0.github.io/ropenblas/>) is useful for users of any GNU/Linux distribution. It will be possible to download, compile and link the OpenBLAS
library (<https://www.openblas.net/>) with the R language, always by the same procedure, regardless of the GNU/Linux distribution used. With the ropenblas package it is possible to download, compile and link the latest version of the OpenBLAS
library even the repositories of the GNU/Linux distribution used do not include the latest versions of OpenBLAS
'. If of interest, older versions of the OpenBLAS
library may be considered. Linking R with an optimized version of BLAS (<https://netlib.org/blas/>) may improve the computational performance of R code. The OpenBLAS
library is an optimized implementation of BLAS that can be easily linked to R with the ropenblas package.
This package provides statistical tools to analyze heterogeneous effects of rare variants within genes that are associated with multiple traits. The package implements methods for assessing pleiotropic effects and identifying allelic heterogeneity, which can be useful in large-scale genetic studies. Methods include likelihood-based statistical tests to assess these effects. For more details, see Lu et al. (2024) <doi:10.1101/2024.10.01.614806>.
This package implements various estimators for average treatment effects - an inverse probability weighted (IPW) estimator, an augmented inverse probability weighted (AIPW) estimator, and a standard regression estimator - that make use of generalized additive models for the treatment assignment model and/or outcome model. See: Glynn, Adam N. and Kevin M. Quinn. 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator." Political Analysis. 18: 36-56.
This package provides a method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods. The methodology can be applied both in regression and survival framework. Implemented methods are: Grouping multiple survival curves described by Villanueva et al. (2018) <doi:10.1002/sim.8016>.
Density ratio estimation. The estimated density ratio function can be used in many applications such as anomaly detection, change-point detection, covariate shift adaptation. The implemented methods are uLSIF
(Hido et al. (2011) <doi:10.1007/s10115-010-0283-2>), RuLSIF
(Yamada et al. (2011) <doi:10.1162/NECO_a_00442>), and KLIEP (Sugiyama et al. (2007) <doi:10.1007/s10463-008-0197-x>).
An implementation of the decimated two-dimensional complex dual-tree wavelet transform as described in Kingsbury (1999) <doi:10.1098/rsta.1999.0447> and Selesnick et al. (2005) <doi:10.1109/MSP.2005.1550194>. Also includes the undecimated version and spectral bias correction described in Nelson et al. (2018) <doi:10.1007/s11222-017-9784-0>. The code is partly based on the dtcwt Python library.
This package provides a plot overlying the niche of multiple species is obtained: 1) to determine the niche conditions which favor a higher species richness, 2) to create a box plot with the range of environmental variables of the species, 3) to obtain a list of species in an area of the niche selected by the user and, 4) to estimate niche overlap among the species.
This package provides tools for fitting periodic coefficients regression models to data where periodicity plays a crucial role. It allows users to model and analyze relationships between variables that exhibit cyclical or seasonal patterns, offering functions for estimating parameters and testing the periodicity of coefficients in linear regression models. For simple periodic coefficient regression model see Regui et al. (2024) <doi:10.1080/03610918.2024.2314662>.
Multiple imputation of missing data in a dataset using MICT or MICT-timing methods. The core idea of the algorithms is to fill gaps of missing data, which is the typical form of missing data in a longitudinal setting, recursively from their edges. Prediction is based on either a multinomial or random forest regression model. Covariates and time-dependent covariates can be included in the model.
This package provides a system that computes metrics to assess the segmentation accuracy of geospatial data. These metrics calculate the discrepancy between segmented and reference objects, and indicate the segmentation accuracy. For more details on choosing evaluation metrics, we suggest seeing Costa et al. (2018) <doi:10.1016/j.rse.2017.11.024> and Jozdani et al. (2020) <doi:10.1016/j.isprsjprs.2020.01.002>.
Can be used to model the fate of soil organic carbon and soil organic nitrogen and to calculate N mineralisation rates. Provides a framework that numerically solves differential equations of soil organic carbon models based on first-order kinetics and extends these models to include the nitrogen component. The name sorcering is an acronym for Soil ORganic Carbon & CN Ratio drIven
Nitrogen modellinG
framework'.
Utilities for handling character vectors that store human-readable text (either plain or with markup, such as HTML or LaTeX
). The package provides, in particular, functions that help with the preparation of plain-text reports, e.g. for expanding and aligning strings that form the lines of such reports. The package also provides generic functions for transforming R objects to HTML and to plain text.
Bringing business and financial analysis to the tidyverse'. The tidyquant package provides a convenient wrapper to various xts', zoo', quantmod', TTR and PerformanceAnalytics
package functions and returns the objects in the tidy tibble format. The main advantage is being able to use quantitative functions with the tidyverse functions including purrr', dplyr', tidyr', ggplot2', lubridate', etc. See the tidyquant website for more information, documentation and examples.
An implementation of Vasicek and Song goodness-of-fit tests. Several functions are provided to estimate differential Shannon entropy, i.e., estimate Shannon entropy of real random variables with density, and test the goodness-of-fit of some family of distributions, including uniform, Gaussian, log-normal, exponential, gamma, Weibull, Pareto, Fisher, Laplace and beta distributions; see Lequesne and Regnault (2020) <doi:10.18637/jss.v096.c01>.
epigraHMM
provides a set of tools for the analysis of epigenomic data based on hidden Markov Models. It contains two separate peak callers, one for consensus peaks from biological or technical replicates, and one for differential peaks from multi-replicate multi-condition experiments. In differential peak calling, epigraHMM
provides window-specific posterior probabilities associated with every possible combinatorial pattern of read enrichment across conditions.