MTrackJ
is an ImageJ
plugin for motion tracking and analysis (see <https://imagescience.org/meijering/software/mtrackj/>). This package reads and writes MTrackJ
Data Files ('.mdf', see <https://imagescience.org/meijering/software/mtrackj/format/>). It supports 2D data and read/writes cluster, point, and channel information. If desired, generates track identifiers that are unique over the clusters. See the project page for more information and examples.
Allows the user to convert PDF tables to formats more amenable to analysis ('.csv', .xml', or .xlsx') by wrapping the PDFTables API. In order to use the package, the user needs to sign up for an API account on the PDFTables website (<https://pdftables.com/pdf-to-excel-api>). The package works by taking a PDF file as input, uploading it to PDFTables, and returning a file with the extracted data.
Defines functions to describe regression models using only pre-computed summary statistics (i.e. means, variances, and covariances) in place of individual participant data. Possible models include linear models for linear combinations, products, and logical combinations of phenotypes. Implements methods presented in Wolf et al. (2021) <doi:10.3389/fgene.2021.745901> Wolf et al. (2020) <doi:10.1142/9789811215636_0063> and Gasdaska et al. (2019) <doi:10.1142/9789813279827_0036>.
Collaborative writing and editing of R Markdown (or Sweave) documents. The local .Rmd (or .Rnw) is uploaded as a plain-text file to Google Drive. By taking advantage of the easily readable Markdown (or LaTeX
) syntax and the well-known online interface offered by Google Docs, collaborators can easily contribute to the writing and editing process. After integrating all authorsâ contributions, the final document can be downloaded and rendered locally.
This package has been prepared to assist users in computing either a sample size or power value for a microarray experimental study. The user is referred to the cited references for technical background on the methodology underpinning these calculations. This package provides support for five types of sample size and power calculations. These five types can be adapted in various ways to encompass many of the standard designs encountered in practice.
This Ruby library provides an implementation of the Matrix
and Vector
classes. The Matrix
class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties (trace, rank, inverse, determinant, eigensystem, etc.). The Vector
class represents a mathematical vector, which is useful in its own right, and also constitutes a row or column of a Matrix
.
Texinfo is the official documentation format of the GNU project. It uses a single source file using explicit commands to produce a final document in any of several supported output formats, such as HTML or PDF. This package includes both the tools necessary to produce Info documents from their source and the command-line Info reader. The emphasis of the language is on expressing the content semantically, avoiding physical markup commands.
Perform parallel factor analysis (PARAFAC: Hitchcock, 1927) <doi:10.1002/sapm192761164> on fluorescence excitation-emission matrices: handle scattering signal and inner filter effect, scale the dataset, fit the model; perform split-half validation or jack-knifing. Modified approaches such as Whittaker interpolation, randomised split-half, and fluorescence and scattering model estimation are also available. The package has a low dependency footprint and has been tested on a wide range of R versions.
This package provides sleep duration estimates using a Pruned Dynamic Programming (PDP) algorithm that efficiently identifies change-points. PDP applied to physical activity data can identify transitions from wakefulness to sleep and vice versa. Baek, Jonggyu, Banker, Margaret, Jansen, Erica C., She, Xichen, Peterson, Karen E., Pitchford, E. Andrew, Song, Peter X. K. (2021) An Efficient Segmentation Algorithm to Estimate Sleep Duration from Actigraphy Data <doi:10.1007/s12561-021-09309-3>.
This package provides functions for analyzing and visualizing complex macroevolutionary dynamics on phylogenetic trees. It is a companion package to the command line program BAMM (Bayesian Analysis of Macroevolutionary Mixtures) and is entirely oriented towards the analysis, interpretation, and visualization of evolutionary rates. Functionality includes visualization of rate shifts on phylogenies, estimating evolutionary rates through time, comparing posterior distributions of evolutionary rates across clades, comparing diversification models using Bayes factors, and more.
Converts numbers to continued fractions and back again. A solver for Pell's Equation is provided. The method for calculating roots in continued fraction form is provided without published attribution in such places as Professor Emeritus Jonathan Lubin, <http://www.math.brown.edu/jlubin/> and his post to StackOverflow
, <https://math.stackexchange.com/questions/2215918> , or Professor Ron Knott, e.g., <https://r-knott.surrey.ac.uk/Fibonacci/cfINTRO.html>
.
This package provides methods for distance covariance and distance correlation (Szekely, et al. (2007) <doi:10.1214/009053607000000505>), generalized version thereof (Sejdinovic, et al. (2013) <doi:10.1214/13-AOS1140>) and corresponding tests (Berschneider, Bottcher (2018) <arXiv:1808.07280>
. Distance standard deviation methods (Edelmann, et al. (2020) <doi:10.1214/19-AOS1935>) and distance correlation methods for survival endpoints (Edelmann, et al. (2021) <doi:10.1111/biom.13470>) are also included.
This package provides functions for fitting Cox proportional hazards models for grouped time-to-event data, where the shared group-specific frailties have a discrete nonparametric distribution. The methods proposed in the package is described by Gasperoni, F., Ieva, F., Paganoni, A. M., Jackson, C. H., Sharples, L. (2018) <doi:10.1093/biostatistics/kxy071>. There are also functions for simulating from these models, with a nonparametric or a parametric baseline hazard function.
This package provides a meta-package that installs and loads a set of packages from easystats ecosystem in a single step. This collection of packages provide a unifying and consistent framework for statistical modeling, visualization, and reporting. Additionally, it provides articles targeted at instructors for teaching easystats', and a dashboard targeted at new R users for easily conducting statistical analysis by accessing summary results, model fit indices, and visualizations with minimal programming.
This package provides functions to calculate indices used to score immunoglobulin A (IgA
) binding of bacteria in IgA
sequencing (IgA-Seq
) experiments. This includes the original Kau and Palm indices and more recent methods as described in Jackson et al. (2020) <doi:10.1101/2020.08.19.257501>. Additionally the package contains a function to simulate IgA-Seq
data and an example experimental data set for method testing.
This package provides sampling and density functions for matrix variate normal, t, and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019) <doi:10.1080/10618600.2019.1696208>. Performs clustering with matrix variate normal and t mixture models.
This package provides methods for quality control and exploratory analysis of surface water quality data collected in Massachusetts, USA. Functions are developed to facilitate data formatting for the Water Quality Exchange Network <https://www.epa.gov/waterdata/water-quality-data-upload-wqx> and reporting of data quality objectives to state agencies. Quality control methods are from Massachusetts Department of Environmental Protection (2020) <https://www.mass.gov/orgs/massachusetts-department-of-environmental-protection>.
Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw objects from spdep package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) <doi:10.1080/13658810802475491>; Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).
Speeds up the process of loading raw data from MBA (Multiplex Bead Assay) examinations, performs quality control checks, and automatically normalises the data, preparing it for more advanced, downstream tasks. The main objective of the package is to create a simple environment for a user, who does not necessarily have experience with R language. The package is developed within the project PvSTATEM
', which is an international project aiming for malaria elimination.
Computes confidence intervals for variance using the Chi-Square distribution, without requiring raw data. Wikipedia (2025) <https://en.wikipedia.org/wiki/Chi-squared_distribution>. All-in-One Chi Distribution CI provides functions to calculate confidence intervals for the population variance based on a chi-squared distribution, utilizing a sample variance and sample size. It offers only a simple all-in-one method for quick calculations to find the CI for Chi Distribution.
This package provides a synthetic control offers a way of evaluating the effect of an intervention in comparative case studies. The package makes a number of improvements when implementing the method in R. These improvements allow users to inspect, visualize, and tune the synthetic control more easily. A key benefit of a tidy implementation is that the entire preparation process for building the synthetic control can be accomplished in a single pipe.
This package provides a binding for the valection program which offers various ways to sample the outputs of competing algorithms or parameterizations, and fairly assess their performance against each other. The valection C library is required to use this package and can be downloaded from: <http://labs.oicr.on.ca/boutros-lab/software/valection>. Cooper CI, et al; Valection: Design Optimization for Validation and Verification Studies; Biorxiv 2018; <doi:10.1101/254839>.
This package provides classes for holding and manipulating Illumina methylation data. Based on eSet, it can contain MIAME information, sample information, feature information, and multiple matrices of data. An "intelligent" import function, methylumiR can read the Illumina text files and create a MethyLumiSet. methylumIDAT can directly read raw IDAT files from HumanMethylation27 and HumanMethylation450 microarrays. Normalization, background correction, and quality control features for GoldenGate, Infinium, and Infinium HD arrays are also included.
This package provides a visual and interactive web application using RStudio's shiny package. Bad quality samples are detected using sample-dependent and sample-independent controls present on the array and user adjustable thresholds. In depth exploration of bad quality samples can be performed using several interactive diagnostic plots of the quality control probes present on the array. Furthermore, the impact of any batch effect provided by the user can be explored.