Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of gold price data in various currencies in the form of USD, EUR, JPY, GBP, CAD, CHF, INR, CNY, TRY, SAR, IDR, AED, THB, VND, EGP, KRW, RUB, ZAR, and AUD. This data comes from the World Gold Council. In addition, the data is in the form of daily, weekly, monthly (average and the end of period), quarterly (average and the end of period), and yearly (average and the end of period).
An implementation of ggplot2'-methods to present the composition of Solvency II Solvency Capital Requirement (SCR) as a series of concentric circle-parts. Solvency II (Solvency 2) is European insurance legislation, coming in force by the delegated acts of October 10, 2014. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2015%3A012%3ATOC>. Additional files, defining the structure of the Standard Formula (SF) method of the SCR-calculation are provided. The structure files can be adopted for localization or for insurance companies who use Internal Models (IM). Options are available for combining smaller components, horizontal and vertical scaling, rotation, and plotting only some circle-parts. With outlines and connectors several SCR-compositions can be compared, for example in ORSA-scenarios (Own Risk and Solvency Assessment).
For plant physiologists, converts conductance (e.g. stomatal conductance) to different units: m/s, mol/m^2/s, and umol/m^2/s/Pa.
This package provides functions for greenhouse gas flux calculation from chamber measurements.
Estimates within and between time point interactions in experience sampling data, using the Graphical vector autoregression model in combination with regularization. See also Epskamp, Waldorp, Mottus & Borsboom (2018) <doi:10.1080/00273171.2018.1454823>.
This package provides probability functions (cumulative distribution and density functions), simulation function (Gumbel copula multivariate simulation) and estimation functions (Maximum Likelihood Estimation, Inference For Margins, Moment Based Estimation and Canonical Maximum Likelihood).
Downloads and aggregates data for Brazilian government issued bonds directly from the website of Tesouro Direto <https://www.tesourodireto.com.br/>.
The geographical complexity of individual variables can be characterized by the differences in local attribute variables, while the common geographical complexity of multiple variables can be represented by fluctuations in the similarity of vectors composed of multiple variables. In spatial regression tasks, the goodness of fit can be improved by incorporating a geographical complexity representation vector during modeling, using a geographical complexity-weighted spatial weight matrix, or employing local geographical complexity kernel density. Similarly, in spatial sampling tasks, samples can be selected more effectively by using a method that weights based on geographical complexity. By optimizing performance in spatial regression and spatial sampling tasks, the spatial bias of the model can be effectively reduced.
Create stunning network experiences powered by the G6 graph visualisation engine JavaScript library <https://g6.antv.antgroup.com/en>. In shiny mode, modify your graph directly from the server function to dynamically interact with nodes and edges. Select your favorite layout among 20 choices. 15 behaviors are available such as interactive edge creation, collapse-expand and brush select. 17 plugins designed to improve the user experience such as a mini-map, toolbars and grid lines. Customise the look and feel of your graph with comprehensive options for nodes, edges and more.
Focuses on data collecting, analyzing and visualization in green finance and environmental risk research and analysis. Main function includes environmental data collecting from official websites such as MEP (Ministry of Environmental Protection of China, <https://www.mee.gov.cn>), water related projects identification and environmental data visualization.
Tool for import and process data from Lattes curriculum platform (<http://lattes.cnpq.br/>). The Brazilian government keeps an extensive base of curricula for academics from all over the country, with over 5 million registrations. The academic life of the Brazilian researcher, or related to Brazilian universities, is documented in Lattes'. Some information that can be obtained: professional formation, research area, publications, academics advisories, projects, etc. getLattes package allows work with Lattes data exported to XML format.
This package provides functions for implementing the Generalized Bayesian Optimal Phase II (G-BOP2) design using various Particle Swarm Optimization (PSO) algorithms, including: - PSO-Default, based on Kennedy and Eberhart (1995) <doi:10.1109/ICNN.1995.488968>, "Particle Swarm Optimization"; - PSO-Quantum, based on Sun, Xu, and Feng (2004) <doi:10.1109/ICCIS.2004.1460396>, "A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization"; - PSO-Dexp, based on Stehlà k et al. (2024) <doi:10.1016/j.asoc.2024.111913>, "A Double Exponential Particle Swarm Optimization with Non-Uniform Variates as Stochastic Tuning and Guaranteed Convergence to a Global Optimum with Sample Applications to Finding Optimal Exact Designs in Biostatistics"; - and PSO-GO.
Several Goodness-of-Fit (GoF) tests for Copulae are provided. A new hybrid test, Zhang et al. (2016) <doi:10.1016/j.jeconom.2016.02.017> is implemented which supports all of the individual tests in the package, e.g. Genest et al. (2009) <doi:10.1016/j.insmatheco.2007.10.005>. Estimation methods for the margins are provided and all the tests support parameter estimation and predefined values. The parameters are estimated by pseudo maximum likelihood but if it fails the estimation switches automatically to inversion of Kendall's tau. For reproducibility of results, the functions support the definition of seeds. Also all the tests support automatized parallelization of the bootstrapping tasks. The package provides an interface to perform new GoF tests by submitting the test statistic.
Create R functions that interact with OAuth2 Google APIs <https://developers.google.com/apis-explorer/> easily, with auto-refresh and Shiny compatibility.
Computes marginal likelihood in Gaussian graphical models through a novel telescoping block decomposition of the precision matrix which allows estimation of model evidence. The top level function used to estimate marginal likelihood is called evidence(), which expects the prior name, data, and relevant prior specific parameters. This package also provides an MCMC prior sampler using the same underlying approach, implemented in prior_sampling(), which expects a prior name and prior specific parameters. Both functions also expect the number of burn-in iterations and the number of sampling iterations for the underlying MCMC sampler.
Trace plots and convergence diagnostics for Markov Chain Monte Carlo (MCMC) algorithms on highly multivariate or unordered spaces. Methods outlined in a forthcoming paper.
Datasets analysed in the book Antony Unwin (2024, ISBN:978-0367674007) "Getting (more out of) Graphics".
Implementation of several goodness-of-fit tests for functional data. Currently, mostly related with the functional linear model with functional/scalar response and functional/scalar predictor. The package allows for the replication of the data applications considered in Garcà a-Portugués, à lvarez-Liébana, à lvarez-Pérez and González-Manteiga (2021) <doi:10.1111/sjos.12486>.
We provides functions that employ splines to estimate generalized partially linear single index models (GPLSIM), which extend the generalized linear models to include nonlinear effect for some predictors. Please see Y. (2017) at <doi:10.1007/s11222-016-9639-0> and Y., and R. (2002) at <doi:10.1198/016214502388618861> for more details.
Interact with Google Cloud Storage <https://cloud.google.com/storage/> API in R. Part of the cloudyr <https://cloudyr.github.io/> project.
Calculates Agresti's generalized odds ratios. For a randomly selected pair of observations from two groups, calculates the odds that the second group will have a higher scoring outcome than that of the first group. Package provides hypothesis testing for if this odds ratio is significantly different to 1 (equal chance).
In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce GLMcat', an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix. The package accompanies the paper "GLMcat: An R Package for Generalized Linear Models for Categorical Responses" in the Journal of Statistical Software, Volume 114, Issue 9 (see <doi:10.18637/jss.v114.i09>).
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
An implementation of Gini-based weighting approaches in constructing composite indicators, providing functionalities for normalization, aggregation, and ranking comparison.