Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compute bivariate dependence measures and perform bivariate competing risks analysis under the generalized Farlie-Gumbel-Morgenstern (FGM) copula. See Shih and Emura (2018) <doi:10.1007/s00180-018-0804-0> and Shih and Emura (2019) <doi:10.1007/s00362-016-0865-5> for details.
This package provides methods to analyse experimental agriculture data, from data synthesis to model selection and visualisation. The package is named after W.S. Gosset aka â Studentâ , a pioneer of modern statistics in small sample experimental design and analysis.
This package provides tools for plotting gene clusters and transcripts by importing data from GenBank, FASTA, and GFF files. It performs BLASTP and MUMmer alignments [Altschul et al. (1990) <doi:10.1016/S0022-2836(05)80360-2>; Delcher et al. (1999) <doi:10.1093/nar/27.11.2369>] and displays results on gene arrow maps. Extensive customization options are available, including legends, labels, annotations, scales, colors, tooltips, and more.
This package provides a method to predict and report gender from Brazilian first names using the Brazilian Institute of Geography and Statistics Census data.
Generator and density function for the Generalized Inverse Gaussian (GIG) distribution.
Allows for easy creation of diagnostic plots for a variety of model objects using the Grammar of Graphics. Provides functionality for both individual diagnostic plots and an array of four standard diagnostic plots.
Collection of datasets as prepared by Profs. A.P. Gore, S.A. Paranjape, and M.B. Kulkarni of Department of Statistics, Poona University, India. With their permission, first letter of their names forms the name of this package, the package has been built by me and made available for the benefit of R users. This collection requires a rich class of models and can be a very useful building block for a beginner.
Read data files readable by gnumeric into R'. Can read whole sheet or a range, from several file formats, including the native format of gnumeric'. Reading is done by using ssconvert (a file converter utility included in the gnumeric distribution <http://www.gnumeric.org>) to convert the requested part to CSV. From gnumeric files (but not other formats) can list sheet names and sheet sizes or read all sheets.
Bindings to the libgraphqlparser C++ library. Parses GraphQL <https://graphql.org> syntax and exports the AST in JSON format.
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.
Streamline the creation of common charts by taking care of a lot of data preprocessing and plot customization for the user. Provides a high-level interface to create plots using ggplot2'.
This package provides functions and data are provided that support a course that emphasizes statistical issues of inference and generalizability. The functions are designed to make it straightforward to illustrate the use of cross-validation, the training/test approach, simulation, and model-based estimates of accuracy. Methods considered are Generalized Additive Modeling, Linear and Quadratic Discriminant Analysis, Tree-based methods, and Random Forests.
Simulation and analysis of graded response data with different types of estimators. Also, an interactive shiny application is provided with graphics for characteristic and information curves. Samejima (2018) <doi:10.1007/978-1-4757-2691-6_5>.
This package implements methods to plot periodic data in any arbitrary range on the fly.
This package provides functions to fit geostatistical data. The data can be continuous, binary or count data and the models implemented are flexible. Conjugate priors are assumed on some parameters while inference on the other parameters can be done through a full Bayesian analysis of by empirical Bayes methods.
This is an add-on package to gamlss'. The purpose of this package is to allow users to fit GAMLSS (Generalised Additive Models for Location Scale and Shape) models when the response variable is defined either in the intervals [0,1), (0,1] and [0,1] (inflated at zero and/or one distributions), or in the positive real line including zero (zero-adjusted distributions). The mass points at zero and/or one are treated as extra parameters with the possibility to include a linear predictor for both. The package also allows transformed or truncated distributions from the GAMLSS family to be used for the continuous part of the distribution. Standard methods and GAMLSS diagnostics can be used with the resulting fitted object.
Analysis of complex ANOVA models with any combination of orthogonal/nested and fixed/random factors, as described by Underwood (1997). There are two restrictions: (i) data must be balanced; (ii) fixed nested factors are not allowed. Homogeneity of variances is checked using Cochran's C test and a posteriori comparisons of means are done using Student-Newman-Keuls (SNK) procedure. For those terms with no denominator in the F-ratio calculation, pooled mean squares and quasi F-ratios are provided. Magnitute of effects are assessed by components of variation.
Collection of tools that facilitates data access and workflow for spatial analysis of Argentina. Includes historical information from censuses, administrative limits at different levels of aggregation, location of human settlements, among others. Since it is expected that the majority of users will be Spanish-speaking, the documentation of the package prioritizes this language, although an effort is made to also offer annotations in English.
Data from multi environment agronomic trials, which are often carried out by plant breeders, can be analyzed with the tools offered by this package such as the Additive Main effects and Multiplicative Interaction model or AMMI ('Gauch 1992, ISBN:9780444892409) and the Site Regression model or SREG ('Cornelius 1996, <doi:10.1201/9780367802226>). Since these methods present a poor performance under the presence of outliers and missing values, this package includes robust versions of the AMMI model ('Rodrigues 2016, <doi:10.1093/bioinformatics/btv533>), and also imputation techniques specifically developed for this kind of data ('Arciniegas-Alarcón 2014, <doi:10.2478/bile-2014-0006>).
Estimates the parameters of a GARCH-X model with exogenous covariates, performs hypothesis tests for the parameters returning the p-values, and uses False Discovery Rate p-value corrections to select the exogenous variables.
This package provides methods for dividing data into groups. Create balanced partitions and cross-validation folds. Perform time series windowing and general grouping and splitting of data. Balance existing groups with up- and downsampling or collapse them to fewer groups.
Generalizes application of gray-level co-occurrence matrix (GLCM) metrics to objects outside of images. The current focus is to apply GLCM metrics to the study of biological networks and fitness landscapes that are used in studying evolutionary medicine and biology, particularly the evolution of cancer resistance. The package was developed as part of the author's publication in Physics in Medicine and Biology Barker-Clarke et al. (2023) <doi:10.1088/1361-6560/ace305>. A general reference to learn more about mathematical oncology can be found at Rockne et al. (2019) <doi:10.1088/1478-3975/ab1a09>.
This package provides a simple way to interact with and extract data from the official Google Knowledge Graph API <https://developers.google.com/knowledge-graph/>.
Conducts hierarchical partitioning to calculate individual contributions of each predictor (fixed effects) towards marginal R2 for generalized linear mixed-effect model (including lm, glm and glmm) based on output of r.squaredGLMM() in MuMIn', applying the algorithm of Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6)1302-1307<doi:10.1093/jpe/rtac096>.