Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a scalable implementation of the highly adaptive lasso algorithm, including routines for constructing sparse matrices of basis functions of the observed data, as well as a custom implementation of Lasso regression tailored to enhance efficiency when the matrix of predictors is composed exclusively of indicator functions. For ease of use and increased flexibility, the Lasso fitting routines invoke code from the glmnet package by default. The highly adaptive lasso was first formulated and described by MJ van der Laan (2017) <doi:10.1515/ijb-2015-0097>, with practical demonstrations of its performance given by Benkeser and van der Laan (2016) <doi:10.1109/DSAA.2016.93>. This implementation of the highly adaptive lasso algorithm was described by Hejazi, Coyle, and van der Laan (2020) <doi:10.21105/joss.02526>.
This package provides uniform testing procedures for existence and heterogeneity of threshold effects in high-dimensional nonparametric panel regression models. The package accompanies the paper Chen, Keilbar, Su and Wang (2023) "Inference on many jumps in nonparametric panel regression models". arXiv preprint <doi:10.48550/arXiv.2312.01162>.
This package creates styled tables for data presentation. Export to HTML, LaTeX, RTF, Word', Excel', and PowerPoint'. Simple, modern interface to manipulate borders, size, position, captions, colours, text styles and number formatting. Table cells can span multiple rows and/or columns. Includes a huxreg function for creation of regression tables, and quick_* one-liners to print data to a new document.
Maintenance has been discontinued for this package. It has been superseded by GeneralizedHyperbolic'. GeneralizedHyperbolic includes all the functionality of HyperbolicDist and more and is based on a more rational design. HyperbolicDist provides functions for the hyperbolic and related distributions. Density, distribution and quantile functions and random number generation are provided for the hyperbolic distribution, the generalized hyperbolic distribution, the generalized inverse Gaussian distribution and the skew-Laplace distribution. Additional functionality is provided for the hyperbolic distribution, including fitting of the hyperbolic to data.
This package provides a visualization suite primarily designed for single-cell RNA-sequencing data analysis applications, but adaptable to other purposes as well. It introduces novel plots to represent two-variable and frequency data and optimizes some commonly used plotting options (e.g., correlation, network, density and alluvial plots) for ease of usage and flexibility.
Hierarchical and single-level non-negative matrix factorization. Several NMF algorithms are available.
Nonparametric cumulative-incidence based estimation of the ratios of sub-hazard ratios to cause-specific hazard ratios using the approach from Ng et al. (2020).
This package provides a local haplotyping tool for use in trait association and trait prediction analyses pipelines. HaploVar enables users take single nucleotide polymorphisms (SNPs) (in VCF format) and a linkage disequilibrium (LD) matrix, calculate local haplotypes and format the output to be compatible with a wide range of trait association and trait prediction tools. The local haplotypes are calculated from the LD matrix using a clustering algorithm called density-based spatial clustering of applications with noise ('DBSCAN') (Ester et al., 1996) <ISBN: 1577350049>.
To test the homogeneity of stratum effects in stratified paired binary data.
The hydReng package provides a set of functions for hydraulic engineering tasks and natural hazard assessments. It includes basic hydraulics (wetted area, wetted perimeter, flow, flow velocity, flow depth, and maximum flow) for open channels with arbitrary geometry under uniform flow conditions. For structures such as circular pipes, weirs, and gates, the package includes calculations for pressure flow, backwater depth, and overflow over a weir crest. Additionally, it provides formulas for calculating bedload transport. The formulas used can be found in standard literature on hydraulics, such as Bollrich (2019, ISBN:978-3-410-29169-5) or Hager (2011, ISBN:978-3-642-77430-0).
This package provides a collection of datasets and supporting functions accompanying Health Metrics and the Spread of Infectious Diseases by Federica Gazzelloni (2024). This package provides data for health metrics calculations, including Disability-Adjusted Life Years (DALYs), Years of Life Lost (YLLs), and Years Lived with Disability (YLDs), as well as additional tools for analyzing and visualizing health data. Federica Gazzelloni (2024) <doi:10.5281/zenodo.10818338>.
Hypergeometric Intersection distributions are a broad group of distributions that describe the probability of picking intersections when drawing independently from two (or more) urns containing variable numbers of balls belonging to the same n categories. <arXiv:1305.0717>.
Implemented here are procedures for fitting hierarchical generalized linear models (HGLM). It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the mean model. As statistical models, HGLMs were initially developed by Lee and Nelder (1996) <https://www.jstor.org/stable/2346105?seq=1>. We provide an implementation (Ronnegard, Alam and Shen 2010) <https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf> following Lee, Nelder and Pawitan (2006) <ISBN: 9781420011340> with algorithms extended for spatial modeling (Alam, Ronnegard and Shen 2015) <https://journal.r-project.org/archive/2015/RJ-2015-017/RJ-2015-017.pdf>.
This package provides a user-friendly tool to fit Bayesian regression models. It can fit 3 types of Bayesian models using individual-level, summary-level, and individual plus pedigree-level (single-step) data for both Genomic prediction/selection (GS) and Genome-Wide Association Study (GWAS), it was designed to estimate joint effects and genetic parameters for a complex trait, including: (1) fixed effects and coefficients of covariates, (2) environmental random effects, and its corresponding variance, (3) genetic variance, (4) residual variance, (5) heritability, (6) genomic estimated breeding values (GEBV) for both genotyped and non-genotyped individuals, (7) SNP effect size, (8) phenotype/genetic variance explained (PVE) for single or multiple SNPs, (9) posterior probability of association of the genomic window (WPPA), (10) posterior inclusive probability (PIP). The functions are not limited, we will keep on going in enriching it with more features. References: Lilin Yin et al. (2025) <doi:10.18637/jss.v114.i06>; Meuwissen et al. (2001) <doi:10.1093/genetics/157.4.1819>; Gustavo et al. (2013) <doi:10.1534/genetics.112.143313>; Habier et al. (2011) <doi:10.1186/1471-2105-12-186>; Yi et al. (2008) <doi:10.1534/genetics.107.085589>; Zhou et al. (2013) <doi:10.1371/journal.pgen.1003264>; Moser et al. (2015) <doi:10.1371/journal.pgen.1004969>; Lloyd-Jones et al. (2019) <doi:10.1038/s41467-019-12653-0>; Henderson (1976) <doi:10.2307/2529339>; Fernando et al. (2014) <doi:10.1186/1297-9686-46-50>.
This package provides a handy collection of utility functions designed to aid in package development, plotting and scientific research. Package development functionalities includes among others tools such as cross-referencing package imports with the description file, analysis of redundant package imports, editing of the description file and the creation of package badges for GitHub. Some of the other functionalities include automatic package installation and loading, plotting points without overlap, creating nice breaks for plots, overview tables and many more handy utility functions.
This package provides a dummy package to demonstrate how to interface to a jar file that resides inside an R package.
Collection of functions to help retrieving data from Hub'Eau the free and public French National APIs on water <https://hubeau.eaufrance.fr/>.
This package provides a Shiny app allowing to convert HTML code to R code (e.g. <span>Hello</span> to tags$span("Hello")'), for usage in a Shiny UI.
The Gene Ontology (GO) Consortium <https://geneontology.org/> organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as GoMiner (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Microarray studies are usually analyzed with BP, whereas proteomics researchers often prefer CC. To capture the benefit of both of those ontologies, I developed a two-dimensional version of High-Throughput GoMiner ('HTGM2D'). I generate a 2D heat map whose axes are any two of BP, MF, or CC, and the value within a picture element of the heat map reflects the Jaccard metric p-value for the number of genes in common for the corresponding pair.
This package provides a wrapper around a CSS library called Hover.css', intended for use in shiny applications.
Provide functions to make estimate the number of states for a hidden Markov model (HMM) using marginal likelihood method proposed by the authors. See the Manual.pdf file a detail description of all functions, and a detail tutorial.
An S4 class and several functions which utilize internally stored datasets and gauging data enable 1d water level interpolation. The S4 class (WaterLevelDataFrame) structures the computation and visualisation of 1d water level information along the German federal waterways Elbe and Rhine. hyd1d delivers 1d water level data - extracted from the FLYS database - and validated gauging data - extracted from the hydrological database WISKI7 - package-internally. For computations near real time gauging data are queried externally from the PEGELONLINE REST API <https://pegelonline.wsv.de/webservice/dokuRestapi>.
This package creates nomogram visualizations for penalized Cox regression models, with the support of reproducible survival model building, validation, calibration, and comparison for high-dimensional data.
Implementation of the Hysteretic and Gatekeeping Depressions Model (HGDM) which calculates variable connected/contributing areas and resulting discharge volumes in prairie basins dominated by depressions ("slough" or "potholes"). The small depressions are combined into a single "meta" depression which explicitly models the hysteresis between the storage of water and the connected/contributing areas of the depressions. The largest (greater than 5% of the total depressional area) depression (if it exists) is represented separately to model its gatekeeping, i.e. the blocking of upstream flows until it is filled. The methodolgy is described in detail in Shook and Pomeroy (2025, <doi:10.1016/j.jhydrol.2025.132821>).