Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Group Bayesian Networks: This package implements the inference of group Bayesian networks based on hierarchical feature clustering, and the adaptive refinement of the grouping regarding an outcome of interest, as described in Becker et. al (2021) <doi: 10.1371/journal.pcbi.1008735>.
GitHub apps provide a powerful way to manage fine grained programmatic access to specific git repositories, without having to create dummy users, and which are safer than a personal access token for automated tasks. This package extends the gh package to let you authenticate and interact with GitHub <https://docs.github.com/en/rest/overview> in R as an app.
Supports modeling health outcomes using Bayesian hierarchical spatio-temporal models with complex covariate effects (e.g., linear, non-linear, interactions, distributed lag linear and non-linear models) in the INLA framework. It is designed to help users identify key drivers and predictors of disease risk by enabling streamlined model exploration, comparison, and visualization of complex covariate effects. See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021) <doi:10.1016/S2542-5196(20)30292-8>.
Gaussian process regression models, a.k.a. Kriging models, are applied to global multi-objective optimization of black-box functions. Multi-objective Expected Improvement and Step-wise Uncertainty Reduction sequential infill criteria are available. A quantification of uncertainty on Pareto fronts is provided using conditional simulations.
Discrete scales for the colorblind-friendly Okabe-Ito palette, including color', fill', and edge_colour'. ggokabeito provides ggplot2 and ggraph scales to easily use the Okabe-Ito palette in your data visualizations.
Fits generalized linear models (GLMs) when there is missing data in both the response and categorical covariates. The functions implement likelihood-based methods using the Expectation and Maximization (EM) algorithm and optionally apply Firthâ s bias correction for improved inference. See Pradhan, Nychka, and Bandyopadhyay (2025) <https:>, Maiti and Pradhan (2009) <doi:10.1111/j.1541-0420.2008.01186.x>, Maity, Pradhan, and Das (2019) <doi:10.1080/00031305.2017.1407359> for further methodological details.
Implement maximum likelihood estimation for Poisson generalized linear models with grouped and right-censored count data. Intended to be used for analyzing grouped and right-censored data, which is widely applied in many branches of social sciences. The algorithm implemented is described in Fu et al., (2021) <doi:10.1111/rssa.12678>.
An extension of ggplot2 that makes it easy to add raw grid output, such as customised annotations, to a ggplot2 plot.
This package provides curly braces and square brackets in ggplot2 plus matching text. stat_brace() plots braces/brackets to embrace data. stat_bracetext() plots corresponding text, fitting to the braces from stat_brace().
Additional annotations, stats, geoms and scales for plotting "light" spectra with ggplot2', together with specializations of ggplot() and autoplot() methods for spectral data and waveband definitions stored in objects of classes defined in package photobiology'. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
Download geyser eruption and observation data from the GeyserTimes site (<https://geysertimes.org>) and optionally store it locally. The vignette shows a simple analysis of downloading, accessing, and summarizing the data.
This package provides a collection of tools which extract a model documentation from GAMS code and comments. In order to use the package you need to install pandoc and pandoc-citeproc first (<https://pandoc.org/>).
Designed to simplify geospatial data access from the Statistics Finland Web Feature Service API <https://geo.stat.fi/geoserver/index.html>, the geofi package offers researchers and analysts a set of tools to obtain and harmonize administrative spatial data for a wide range of applications, from urban planning to environmental research. The package contains annually updated time series of municipality key datasets that can be used for data aggregation and language translations.
Facilitate reporting for regression and correlation modeling, hypothesis testing, variance analysis, outlier detection, and detailed descriptive statistics.
Spatial data plus the power of the ggplot2 framework means easier mapping when input data are already in the form of spatial objects.
Implementation of several goodness-of-fit tests for functional data. Currently, mostly related with the functional linear model with functional/scalar response and functional/scalar predictor. The package allows for the replication of the data applications considered in Garcà a-Portugués, à lvarez-Liébana, à lvarez-Pérez and González-Manteiga (2021) <doi:10.1111/sjos.12486>.
This package provides a system for fitting Gompertz Curve in a Time Series Data.
Fits high dimensional penalized generalized linear mixed models using the Monte Carlo Expectation Conditional Minimization (MCECM) algorithm. The purpose of the package is to perform variable selection on both the fixed and random effects simultaneously for generalized linear mixed models. The package supports fitting of Binomial, Gaussian, and Poisson data with canonical links, and supports penalization using the MCP, SCAD, or LASSO penalties. The MCECM algorithm is described in Rashid et al. (2020) <doi:10.1080/01621459.2019.1671197>. The techniques used in the minimization portion of the procedure (the M-step) are derived from the procedures of the ncvreg package (Breheny and Huang (2011) <doi:10.1214/10-AOAS388>) and grpreg package (Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>), with appropriate modifications to account for the estimation and penalization of the random effects. The ncvreg and grpreg packages also describe the MCP, SCAD, and LASSO penalties.
Segmentation and classification procedures for data from the Activinsights GENEActiv <https://activinsights.com/technology/geneactiv/> accelerometer that provides the user with a model to guess behaviour from test data where behaviour is missing. Includes a step counting algorithm, a function to create segmented data with custom features and a function to use recursive partitioning provided in the function rpart() of the rpart package to create classification models.
Fits a multivariate linear mixed effects model that uses a polygenic term, after Zhou & Stephens (2014) (<https://www.nature.com/articles/nmeth.2848>). Of particular interest is the estimation of variance components with restricted maximum likelihood (REML) methods. Genome-wide efficient mixed-model association (GEMMA), as implemented in the package gemma2', uses an expectation-maximization algorithm for variance components inference for use in quantitative trait locus studies.
Fits a generalized linear density ratio model (GLDRM). A GLDRM is a semiparametric generalized linear model. In contrast to a GLM, which assumes a particular exponential family distribution, the GLDRM uses a semiparametric likelihood to estimate the reference distribution. The reference distribution may be any discrete, continuous, or mixed exponential family distribution. The model parameters, which include both the regression coefficients and the cdf of the unspecified reference distribution, are estimated by maximizing a semiparametric likelihood. Regression coefficients are estimated with no loss of efficiency, i.e. the asymptotic variance is the same as if the true exponential family distribution were known. Huang (2014) <doi:10.1080/01621459.2013.824892>. Huang and Rathouz (2012) <doi:10.1093/biomet/asr075>. Rathouz and Gao (2008) <doi:10.1093/biostatistics/kxn030>.
This package contains methods for fitting Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Generalized regression models are common methods for handling data for which assuming Gaussian-distributed errors is not appropriate. For instance, if the response of interest is binary, count, or proportion data, one can instead model the expectation of the response based on an appropriate data-generating distribution. This package provides methods for fitting GLMs and GAMs under Beta regression, Poisson regression, Gamma regression, and Binomial regression (currently GLM only) settings. Models are fit using local scoring algorithms described in Hastie and Tibshirani (1990) <doi:10.1214/ss/1177013604>.
Parameter estimation and prediction of Gaussian Process Classifier models as described in Bachoc et al. (2020) <doi:10.1007/S10898-020-00920-0>. Important functions : gpcm(), predict.gpcm(), update.gpcm().
This package provides methods for searching through genealogical data and displaying the results. Plotting algorithms assist with data exploration and publication-quality image generation. Includes interactive genealogy visualization tools. Provides parsing and calculation methods for variables in descendant branches of interest. Uses the Grammar of Graphics.