Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs Geometrical Archetypal Analysis after creating Grid Archetypes which are the Cartesian Product of all minimum, maximum variable values. Since the archetypes are fixed now, we have the ability to compute the convex composition coefficients for all our available data points much faster by using the half part of Principal Convex Hull Archetypal method. Additionally we can decide to keep as archetypes the closer to the Grid Archetypes ones. Finally the number of archetypes is always 2 to the power of the dimension of our data points if we consider them as a vector space. Cutler, A., Breiman, L. (1994) <doi:10.1080/00401706.1994.10485840>. Morup, M., Hansen, LK. (2012) <doi:10.1016/j.neucom.2011.06.033>. Christopoulos, DT. (2024) <doi:10.13140/RG.2.2.14030.88642>.
Fit linear mixed-effects models using restricted (or residual) maximum likelihood (REML) and with generalized inverse matrices to specify covariance structures for random effects. In particular, the package is suited to fit quantitative genetic mixed models, often referred to as animal models'. Implements the average information algorithm as the main tool to maximize the restricted log-likelihood, but with other algorithms available.
This package provides tools for downloading, processing, and reporting daily and finalized GreenFeed data.
This package contains functions for a two-stage multiple testing procedure for grouped hypothesis, aiming at controlling both the total posterior false discovery rate and within-group false discovery rate.
Neural networks are applied to create a density value function which approximates density values for a data source. The trained neural network is analyzed for different levels. For each level metric subspaces with density values above a level are determined. The obtained set of metric subspaces and the trained neural network are assembled into a data model. A prerequisite is the definition of a data source, the generation of generative data and the calculation of density values. These tasks are executed using package ganGenerativeData <https://cran.r-project.org/package=ganGenerativeData>.
This package provides a set of wrapper functions that mainly re-produces most of the sequence plots rendered with TraMineR::seqplot(). Whereas TraMineR uses base R to produce the plots this library draws on ggplot2'. The plots are produced on the basis of a sequence object defined with TraMineR::seqdef(). The package automates the reshaping and plotting of sequence data. Resulting plots are of class ggplot', i.e. components can be added and tweaked using + and regular ggplot2 functions.
Generalized competing event model based on Cox PH model and Fine-Gray model. This function is designed to develop optimized risk-stratification methods for competing risks data, such as described in: 1. Carmona R, Gulaya S, Murphy JD, Rose BS, Wu J, Noticewala S,McHale MT, Yashar CM, Vaida F, and Mell LK (2014) <DOI:10.1016/j.ijrobp.2014.03.047>. 2. Carmona R, Zakeri K, Green G, Hwang L, Gulaya S, Xu B, Verma R, Williamson CW, Triplett DP, Rose BS, Shen H, Vaida F, Murphy JD, and Mell LK (2016) <DOI:10.1200/JCO.2015.65.0739>. 3. Lunn, Mary, and Don McNeil (1995) <DOI:10.2307/2532940>.
The method aims to identify important factors in screening experiments by aggregation over random models as studied in Singh and Stufken (2022) <doi:10.48550/arXiv.2205.13497>. This package provides functions to run the Gauss-Dantzig selector on screening experiments when interactions may be affecting the response. Currently, all functions require each factor to be at two levels coded as +1 and -1.
Given an adjacency matrix drawn from a Generalized Stochastic Block Model with missing observations, this package robustly estimates the probabilities of connection between nodes and detects outliers nodes, as describes in Gaucher, Klopp and Robin (2019) <arXiv:1911.13122>.
Turn arbitrary functions into binary operators.
This package implements three nonparametric two-sample tests for multivariate paired data and pair matching. Methods are described in the associated preprint: <doi:10.48550/arXiv.2007.01497>.
Allows the user to animate text within rmarkdown documents and shiny applications. The animations are activated using the Animate.css library. See <https://animate.style/> for more information.
Genotyping of triploid individuals from luminescence data (marker probeset A and B). Works also for diploids. Two main functions: Run_Clustering() that regroups individuals with a same genotype based on proximity and Run_Genotyping() that assigns a genotype to each cluster. For Shiny interface use: launch_GenoShiny().
This package performs variable selection with data from Genome-wide association studies (GWAS), or other high-dimensional data with continuous, binary or survival outcomes, combining in an iterative framework the computational efficiency of the structured screen-and-select variable selection strategy based on some association learning and the parsimonious uncertainty quantification provided by the use of non-local priors (see Sanyal et al., 2019 <DOI:10.1093/bioinformatics/bty472>).
Robust multiple or multivariate linear regression, nonparametric regression on orthogonal components, classical or robust partial least squares models as described in Bilodeau, Lafaye De Micheaux and Mahdi (2015) <doi:10.18637/jss.v065.i01>.
This package provides a tool to process and analyse data collected with wearable raw acceleration sensors as described in Migueles and colleagues (JMPB 2019), and van Hees and colleagues (JApplPhysiol 2014; PLoSONE 2015). The package has been developed and tested for binary data from GENEActiv <https://activinsights.com/>, binary (.gt3x) and .csv-export data from Actigraph <https://theactigraph.com> devices, and binary (.cwa) and .csv-export data from Axivity <https://axivity.com>. These devices are currently widely used in research on human daily physical activity. Further, the package can handle accelerometer data file from any other sensor brand providing that the data is stored in csv format. Also the package allows for external function embedding.
Collection of packages for work with API Google Ads <https://developers.google.com/google-ads/api/docs/start>, Yandex Direct <https://yandex.ru/dev/direct/>, Yandex Metrica <https://yandex.ru/dev/metrika/>, MyTarget <https://target.my.com/help/advertisers/api_arrangement/ru>, Vkontakte <https://vk.com/dev/methods>, Facebook <https://developers.facebook.com/docs/marketing-apis/> and AppsFlyer <https://support.appsflyer.com/hc/en-us/articles/207034346-Using-Pull-API-aggregate-data>. This packages allows you loading data from ads account and manage your ads materials.
Geoms for placing arrowheads at multiple points along a segment, not just at the end; position function to shift starts and ends of arrows to avoid exactly intersecting points.
This package performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2020), <arXiv:2007.08623v1>.
Two arms clinical trials required sample size is calculated in the comprehensive parametric context. The calculation is based on the type of endpoints(continuous/binary/time-to-event/ordinal), design (parallel/crossover), hypothesis tests (equality/noninferiority/superiority/equivalence), trial arms noncompliance rates and expected loss of follow-up. Methods are described in: Chow SC, Shao J, Wang H, Lokhnygina Y (2017) <doi:10.1201/9781315183084>, Wittes, J (2002) <doi:10.1093/epirev/24.1.39>, Sato, T (2000) <doi:10.1002/1097-0258(20001015)19:19%3C2689::aid-sim555%3E3.0.co;2-0>, Lachin J M, Foulkes, M A (1986) <doi:10.2307/2531201>, Whitehead J(1993) <doi:10.1002/sim.4780122404>, Julious SA (2023) <doi:10.1201/9780429503658>.
Approximate frequentist inference for generalized linear mixed model analysis with expectation propagation used to circumvent the need for multivariate integration. In this version, the random effects can be any reasonable dimension. However, only probit mixed models with one level of nesting are supported. The methodology is described in Hall, Johnstone, Ormerod, Wand and Yu (2018) <arXiv:1805.08423v1>.
This package provides a bottom up model to estimate the emission levels of public transport systems based on General Transit Feed Specification (GTFS) data. The package requires two main inputs: i) Public transport data in the GTFS standard format; and ii) Some basic information on fleet characteristics such as fleet age, technology, fuel and Euro stage. As it stands, the package estimates several pollutants at high spatial and temporal resolutions. Pollution levels can be calculated for specific transport routes, trips, time of the day or for the transport system as a whole. The output with emission estimates can be extracted in different formats, supporting analysis on how emission levels vary across space, time and by fleet characteristics. A full description of the methods used in the gtfs2emis model is presented in Vieira, J. P. B.; Pereira, R. H. M.; Andrade, P. R. (2022) <doi:10.31219/osf.io/8m2cy>.
Google offers public access to global search volumes from its search engine through the Google Trends portal. The package downloads these search volumes provided by Google Trends and uses them to measure and analyze the distribution of search scores across countries or within countries. The package allows researchers and analysts to use these search scores to investigate global trends based on patterns within these scores. This offers insights such as degree of internationalization of firms and organizations or dissemination of political, social, or technological trends across the globe or within single countries. An outline of the package's methodological foundations and potential applications is available as a working paper: <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3969013>.
Easy wrangling and model-free analysis of microbial growth curve data, as commonly output by plate readers. Tools for reshaping common plate reader outputs into tidy formats and merging them with design information, making data easy to work with using gcplyr and other packages. Also streamlines common growth curve processing steps, like smoothing and calculating derivatives, and facilitates model-free characterization and analysis of growth data. See methods at <https://mikeblazanin.github.io/gcplyr/>.