It provides a generic set of tools for initializing a synthetic population with each individual in specific disease states, and making transitions between those disease states according to the rates calculated on each timestep. The new version 1.0.0 has C++ code integration to make the functions run faster. It has also a higher level function to actually run the transitions for the number of timesteps that users specify. Additional functions will follow for changing attributes on demographic, health belief and movement.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstMatrix
package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces. Opposed to the kst package, kstMatrix
uses matrix representations for knowledge structures. Furthermore, kstMatrix
contains several knowledge spaces developed by the research group around Cornelia Dowling through querying experts.
Alternate font rendering is useful when rendering text to novel graphics outputs where modern font rendering is not available or where bespoke text positioning is required. Bitmap and vector fonts allow for custom layout and rendering using pixel coordinates and line drawing. Formatted text is created as a data.frame of pixel coordinates (for bitmap fonts) or stroke coordinates (for vector fonts). All text can be easily previewed as a matrix or raster image. A selection of fonts is included with this package.
Lights Out is a puzzle game consisting of a grid of lights that are either on or off. Pressing any light will toggle it and its adjacent lights. The goal of the game is to switch all the lights off. This package provides an interface to play the game on different board sizes, both through the command line or with a visual application. Puzzles can also be solved using the automatic solver included. View a demo online at <https://daattali.com/shiny/lightsout/>.
Fast approximate methods for mixed logistic regression in genome-wide analysis studies (GWAS). Two computationnally efficient methods are proposed for obtaining effect size estimates (beta) in Mixed Logistic Regression in GWAS: the Approximate Maximum Likelihood Estimate (AMLE), and the Offset method. The wald test obtained with AMLE is identical to the score test. Data can be genotype matrices in plink format, or dosage (VCF files). The methods are described in details in Milet et al (2020) <doi:10.1101/2020.01.17.910109>.
This package provides a suite of functions for performing analyses, based on a multiverse approach, for conditioning data. Specifically, given the appropriate data, the functions are able to perform t-tests, analyses of variance, and mixed models for the provided data and return summary statistics and plots. The function is also able to return for all those tests p-values, confidence intervals, and Bayes factors. The methods are described in Lonsdorf, Gerlicher, Klingelhofer-Jens, & Krypotos (2022) <doi:10.1016/j.brat.2022.104072>.
Calculate the statistical power to detect clusters using kernel-based spatial relative risk functions that are estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
Estimators for two functionals used to detect Gamma or Pareto distributions, as well as distributions exhibiting similar tail behavior, as introduced by Iwashita and Klar (2023) <doi:10.1111/stan.12316> and Klar (2024) <doi:10.1080/00031305.2024.2413081>. One of these functionals, g, originally proposed by Asmussen and Lehtomaa (2017) <doi:10.3390/risks5010010>, distinguishes between log-convex and log-concave tail behavior. The package also includes methods for visualizing these estimators and their associated confidence intervals across various threshold values.
This package provides an efficient implementation of the K-Means++ algorithm. For more information see (1) "kmeans++ the advantages of the k-means++ algorithm" by David Arthur and Sergei Vassilvitskii (2007), Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 1027-1035, and (2) "The Effectiveness of Lloyd-Type Methods for the k-Means Problem" by Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman and Chaitanya Swamy <doi:10.1145/2395116.2395117>.
Distance-sampling (<doi:10.1007/978-3-319-19219-2>) estimates density and abundance of survey targets (e.g., animals) when detection probability declines with distance. Distance-sampling is popular in ecology, especially when survey targets are observed from aerial platforms (e.g., airplane or drone), surface vessels (e.g., boat or truck), or along walking transects. Distance-sampling includes line-transect studies that measure observation distances as the closest approach of the sample route (transect) to the target (i.e., perpendicular off-transect distance), and point-transect studies that measure observation distances from stationary observers to the target (i.e., radial distance). The routines included here fit smooth (parametric) curves to histograms of observation distances and use those functions to compute effective sampling distances, density of targets in the surveyed area, and abundance of targets in a surrounding study area. Curve shapes include the half-normal, hazard rate, and negative exponential functions. Physical measurement units are required and used throughout to ensure density is reported correctly. The help files are extensive and have been vetted by multiple authors.
Create beautiful and interactive visualizations in a single function call. The data.table package is utilized to perform the data wrangling necessary to prepare your data for the plot types you wish to build, along with allowing fast processing for big data. There are two broad classes of plots available: standard plots and machine learning evaluation plots. There are lots of parameters available in each plot type function for customizing the plots (such as faceting) and data wrangling (such as variable transformations and aggregation).
Identify and visualize individuals with unusual association patterns of genetics and geography using the approach of Chang and Schmid (2023) <doi:10.1101/2023.04.06.535838>. It detects potential outliers that violate the isolation-by-distance assumption using the K-nearest neighbor approach. You can obtain a table of outliers with statistics and visualize unusual geo-genetic patterns on a geographical map. This is useful for landscape genomics studies to discover individuals with unusual geography and genetics associations from a large biological sample.
This package implements our Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints from multiple treatment cycles. The package also provides a novel design to account for both multidimensional toxicity endpoints and early-stage efficacy endpoints in the phase I design. For both designs, functions are provided to recommend the next dosage selection based on the data collected in the available patient cohorts and to simulate trial characteristics given design parameters. Yin, Jun, et al. (2017) <doi:10.1002/sim.7134>.
Recent years have seen an increased interest in novel methods for analyzing quantitative data from experimental psychology. Currently, however, they lack an established and accessible software framework. Many existing implementations provide no guidelines, consisting of small code snippets, or sets of packages. In addition, the use of existing packages often requires advanced programming experience. PredPsych
is a user-friendly toolbox based on machine learning predictive algorithms. It comprises of multiple functionalities for multivariate analyses of quantitative behavioral data based on machine learning models.
Traditional methods for analyzing single cell RNA-seq datasets focus solely on gene expression, but this package introduces a novel approach that goes beyond this limitation. Using Gene Ontology terms as features, the package allows for the functional profile of cell populations, and comparison within and between datasets from the same or different species. Our approach enables the discovery of previously unrecognized functional similarities and differences between cell types and has demonstrated success in identifying cell types functional correspondence even between evolutionarily distant species.
For multiple ranked input lists (full or partial) representing the same set of N objects, the package TopKLists
<doi:10.1515/sagmb-2014-0093> offers (1) statistical inference on the lengths of informative top-k lists, (2) stochastic aggregation of full or partial lists, and (3) graphical tools for the statistical exploration of input lists, and for the visualization of aggregation results. Note that RGtk2 and gWidgets2RGtk2
have been archived on CRAN. See <https://github.com/pievos101/TopKLists>
for installation instructions.
The Mass Spec Query Language (MassQL
) is a domain-specific language enabling to express a query and retrieve mass spectrometry (MS) data in a more natural and understandable way for MS users. It is inspired by SQL and is by design programming language agnostic. The SpectraQL
package adds support for the MassQL
query language to R, in particular to MS data represented by Spectra objects. Users can thus apply MassQL
expressions to analyze and retrieve specific data from Spectra objects.
This package provides a URL-safe base64 encoder and decoder. In contrast to RFC3548, the 62nd character (+
) is replaced with -
, the 63rd character (/
) is replaced with _
. Furthermore, the encoder does not fill the string with trailing =
. The resulting encoded strings comply to the regular expression pattern [A-Za-z0-9_-]
and thus are safe to use in URLs or for file names. The package also comes with a simple base32 encoder/decoder suited for case insensitive file systems.
This package implements parametric and non-parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010) <DOI:10.1214/10-STS321>, Imai, Keele and Tingley (2010) <DOI:10.1037/a0020761>, Imai, Tingley and Yamamoto (2013) <DOI:10.1111/j.1467-985X.2012.01032.x>, Imai and Yamamoto (2013) <DOI:10.1093/pan/mps040> and Yamamoto (2013). In addition to the estimation of causal mediation effects, the software also allows researchers to conduct sensitivity analysis for certain parametric models.
This package implements persistent row and column annotations for R matrices. The annotations associated with rows and columns are preserved after subsetting, transposition, and various other matrix-specific operations. Intended use case is for storing and manipulating genomic datasets which typically consist of a matrix of measurements (like gene expression values) as well as annotations about rows (i.e. genomic locations) and annotations about columns (i.e. meta-data about collected samples). But annmatrix objects are also expected to be useful in various other contexts.
Enrichment strategies play a critical role in modern clinical trial design, especially as precision medicine advances the focus on patient-specific efficacy. Recent developments in enrichment design have introduced biomarker randomness and accounted for the correlation structure between treatment effect and biomarker, resulting in a two-stage threshold enrichment design. We propose novel two-stage enrichment designs capable of handling two or more continuous biomarkers. See Zhang, F. and Gou, J. (2025). Using multiple biomarkers for patient enrichment in two-stage clinical designs. Technical Report.
Analysis of trade in value added with international input-output tables. Includes commands for easy data extraction, matrix manipulation, decomposition of value added in gross exports and calculation of value added indicators, with full geographical and sector customization. Decomposition methods include Borin and Mancini (2023) <doi:10.1080/09535314.2022.2153221>, Miroudot and Ye (2021) <doi:10.1080/09535314.2020.1730308>, Wang et al. (2013) <https://econpapers.repec.org/paper/nbrnberwo/19677.htm> and Koopman et al. (2014) <doi:10.1257/aer.104.2.459>.
This package provides a handy tool to calculate carbon footprints from air travel based on three-letter International Air Transport Association (IATA) airport codes or latitude and longitude. footprint first calculates the great-circle distance between departure and arrival destinations. It then uses the Department of Environment, Food & Rural Affairs (DEFRA) greenhouse gas conversion factors for business air travel to estimate the carbon footprint. These conversion factors consider trip length, flight class (e.g. economy, business), and emissions metric (e.g. carbon dioxide equivalent, methane).
This package provides several helper functions for working with knitr and LaTeX
'. It includes xTab
for creating traditional LaTeX
tables, lTab
for generating longtable environments, and sTab
for generating a supertabular environment. Additionally, this package contains a knitr_setup()
function which fixes a well-known bug in knitr', which distorts the results="asis" command when used in conjunction with user-defined commands; and a com command (<<com=TRUE>>=) which renders the output from knitr as a LaTeX
command.