_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-conversim 0.1.0
Propagated dependencies: r-word2vec@0.4.0 r-topicmodels@0.2-17 r-tm@0.7-14 r-slam@0.1-55 r-sentimentr@2.9.0 r-lsa@0.73.3 r-lme4@1.1-35.5 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/chaoliu-cl/conversim
Licenses: GPL 3+
Synopsis: Conversation Similarity Analysis
Description:

Analyze and compare conversations using various similarity measures including topic, lexical, semantic, structural, stylistic, sentiment, participant, and timing similarities. Supports both pairwise conversation comparisons and analysis of multiple dyads. Methods are based on established research: Topic modeling: Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993>; Landauer et al. (1998) <doi:10.1080/01638539809545028>; Lexical similarity: Jaccard (1912) <doi:10.1111/j.1469-8137.1912.tb05611.x>; Semantic similarity: Salton & Buckley (1988) <doi:10.1016/0306-4573(88)90021-0>; Mikolov et al. (2013) <doi:10.48550/arXiv.1301.3781>; Pennington et al. (2014) <doi:10.3115/v1/D14-1162>; Structural and stylistic analysis: Graesser et al. (2004) <doi:10.1075/target.21131.ryu>; Sentiment analysis: Rinker (2019) <https://github.com/trinker/sentimentr>.

r-adaptivpt 1.1.0
Propagated dependencies: r-rgl@1.3.12 r-rcppprogress@0.4.2 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=adaptIVPT
Licenses: GPL 3+
Synopsis: Adaptive Bioequivalence Design for In-Vitro Permeation Tests
Description:

This package contains functions carrying out adaptive procedures using mixed scaling approach to establish bioequivalence for in-vitro permeation test (IVPT) data. Currently, the package provides procedures based on parallel replicate design and balanced data, according to the U.S. Food and Drug Administration's "Draft Guidance on Acyclovir" <https://www.accessdata.fda.gov/drugsatfda_docs/psg/Acyclovir_topical%20cream_RLD%2021478_RV12-16.pdf>. Potvin et al. (2008) <doi:10.1002/pst.294> provides the basis for our adaptive design (see Method B). For a comprehensive overview of the method, refer to Lim et al. (2023) <doi:10.1002/pst.2333>. This package reflects the views of the authors and should not be construed to represent the views or policies of the U.S. Food and Drug Administration.

r-eddington 4.2.0
Propagated dependencies: r-xml2@1.3.6 r-rcpp@1.0.13-1 r-r6@2.5.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/pegeler/eddington2
Licenses: GPL 2+
Synopsis: Compute a Cyclist's Eddington Number
Description:

Compute a cyclist's Eddington number, including efficiently computing cumulative E over a vector. A cyclist's Eddington number <https://en.wikipedia.org/wiki/Arthur_Eddington#Eddington_number_for_cycling> is the maximum number satisfying the condition such that a cyclist has ridden E miles or greater on E distinct days. The algorithm in this package is an improvement over the conventional approach because both summary statistics and cumulative statistics can be computed in linear time, since it does not require initial sorting of the data. These functions may also be used for computing h-indices for authors, a metric described by Hirsch (2005) <doi:10.1073/pnas.0507655102>. Both are specific applications of computing the side length of a Durfee square <https://en.wikipedia.org/wiki/Durfee_square>.

r-liblinear 2.10-24
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: <https://dnalytics.com/software/liblinear/>
Licenses: GPL 2
Synopsis: Linear Predictive Models Based on the LIBLINEAR C/C++ Library
Description:

This package provides a wrapper around the LIBLINEAR C/C++ library for machine learning (available at <https://www.csie.ntu.edu.tw/~cjlin/liblinear/>). LIBLINEAR is a simple library for solving large-scale regularized linear classification and regression. It currently supports L2-regularized classification (such as logistic regression, L2-loss linear SVM and L1-loss linear SVM) as well as L1-regularized classification (such as L2-loss linear SVM and logistic regression) and L2-regularized support vector regression (with L1- or L2-loss). The main features of LiblineaR include multi-class classification (one-vs-the rest, and Crammer & Singer method), cross validation for model selection, probability estimates (logistic regression only) or weights for unbalanced data. The estimation of the models is particularly fast as compared to other libraries.

r-miceafter 0.5.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-survival@3.7-0 r-stringr@1.5.1 r-rms@6.8-2 r-rlang@1.1.4 r-purrr@1.0.2 r-proc@1.18.5 r-mitools@2.4 r-mitml@0.4-5 r-mice@3.16.0 r-magrittr@2.0.3 r-dplyr@1.1.4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://mwheymans.github.io/miceafter/
Licenses: GPL 2+
Synopsis: Data and Statistical Analyses after Multiple Imputation
Description:

Statistical Analyses and Pooling after Multiple Imputation. A large variety of repeated statistical analysis can be performed and finally pooled. Statistical analysis that are available are, among others, Levene's test, Odds and Risk Ratios, One sample proportions, difference between proportions and linear and logistic regression models. Functions can also be used in combination with the Pipe operator. More and more statistical analyses and pooling functions will be added over time. Heymans (2007) <doi:10.1186/1471-2288-7-33>. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>. Sidi (2021) <doi:10.1080/00031305.2021.1898468>. Lott (2018) <doi:10.1080/00031305.2018.1473796>. Grund (2021) <doi:10.31234/osf.io/d459g>.

r-mbnmatime 0.2.6
Dependencies: jags@4.3.1
Propagated dependencies: r-zoo@1.8-12 r-scales@1.3.0 r-rjags@4-16 r-reshape2@1.4.4 r-rdpack@2.6.1 r-r2jags@0.8-9 r-png@0.1-8 r-magrittr@2.0.3 r-lspline@1.0-0 r-knitr@1.49 r-igraph@2.1.1 r-gridextra@2.3 r-ggplot2@3.5.1 r-ggdist@3.3.2 r-dplyr@1.1.4 r-crayon@1.5.3 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://hugaped.github.io/MBNMAtime/
Licenses: GPL 3
Synopsis: Run Time-Course Model-Based Network Meta-Analysis (MBNMA) Models
Description:

Fits Bayesian time-course models for model-based network meta-analysis (MBNMA) that allows inclusion of multiple time-points from studies. Repeated measures over time are accounted for within studies by applying different time-course functions, following the method of Pedder et al. (2019) <doi:10.1002/jrsm.1351>. The method allows synthesis of studies with multiple follow-up measurements that can account for time-course for a single or multiple treatment comparisons. Several general time-course functions are provided; others may be added by the user. Various characteristics can be flexibly added to the models, such as correlation between time points and shared class effects. The consistency of direct and indirect evidence in the network can be assessed using unrelated mean effects models and/or by node-splitting.

r-pandemics 0.1.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pandemics
Licenses: GPL 2
Synopsis: Monitoring a Developing Pandemic with Available Data
Description:

Full dynamic system to describe and forecast the spread and the severity of a developing pandemic, based on available data. These data are number of infections, hospitalizations, deaths and recoveries notified each day. The system consists of three transitions, infection-infection, infection-hospital and hospital-death/recovery. The intensities of these transitions are dynamic and estimated using non-parametric local linear estimators. The package can be used to provide forecasts and survival indicators such as the median time spent in hospital and the probability that a patient who has been in hospital for a number of days can leave it alive. Methods are described in Gámiz, Mammen, Martà nez-Miranda, and Nielsen (2024) <doi:10.48550/arXiv.2308.09918> and <doi:10.48550/arXiv.2308.09919>.

r-scdensity 1.0.3
Propagated dependencies: r-quadprog@1.5-8 r-lpsolve@5.6.22
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=scdensity
Licenses: GPL 2
Synopsis: Shape-Constrained Kernel Density Estimation
Description:

This package implements methods for obtaining kernel density estimates subject to a variety of shape constraints (unimodality, bimodality, symmetry, tail monotonicity, bounds, and constraints on the number of inflection points). Enforcing constraints can eliminate unwanted waves or kinks in the estimate, which improves its subjective appearance and can also improve statistical performance. The main function scdensity() is very similar to the density() function in stats', allowing shape-restricted estimates to be obtained with little effort. The methods implemented in this package are described in Wolters and Braun (2017) <doi:10.1080/03610918.2017.1288247>, Wolters (2012) <doi:10.18637/jss.v047.i06>, and Hall and Huang (2002) <https://www3.stat.sinica.edu.tw/statistica/j12n4/j12n41/j12n41.htm>. See the scdensity() help for for full citations.

r-timescape 1.30.0
Propagated dependencies: r-stringr@1.5.1 r-jsonlite@1.8.9 r-htmlwidgets@1.6.4 r-gtools@3.9.5 r-dplyr@1.1.4
Channel: guix-bioc
Location: guix-bioc/packages/t.scm (guix-bioc packages t)
Home page: https://bioconductor.org/packages/timescape
Licenses: GPL 3
Synopsis: Patient Clonal Timescapes
Description:

TimeScape is an automated tool for navigating temporal clonal evolution data. The key attributes of this implementation involve the enumeration of clones, their evolutionary relationships and their shifting dynamics over time. TimeScape requires two inputs: (i) the clonal phylogeny and (ii) the clonal prevalences. Optionally, TimeScape accepts a data table of targeted mutations observed in each clone and their allele prevalences over time. The output is the TimeScape plot showing clonal prevalence vertically, time horizontally, and the plot height optionally encoding tumour volume during tumour-shrinking events. At each sampling time point (denoted by a faint white line), the height of each clone accurately reflects its proportionate prevalence. These prevalences form the anchors for bezier curves that visually represent the dynamic transitions between time points.

r-fixseqmtp 0.1.2
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=FixSeqMTP
Licenses: GPL 2+
Synopsis: Fixed Sequence Multiple Testing Procedures
Description:

Several generalized / directional Fixed Sequence Multiple Testing Procedures (FSMTPs) are developed for testing a sequence of pre-ordered hypotheses while controlling the FWER, FDR and Directional Error (mdFWER). All three FWER controlling generalized FSMTPs are designed under arbitrary dependence, which allow any number of acceptances. Two FDR controlling generalized FSMTPs are respectively designed under arbitrary dependence and independence, which allow more but a given number of acceptances. Two mdFWER controlling directional FSMTPs are respectively designed under arbitrary dependence and independence, which can also make directional decisions based on the signs of the test statistics. The main functions for each proposed generalized / directional FSMTPs are designed to calculate adjusted p-values and critical values, respectively. For users convenience, the functions also provide the output option for printing decision rules.

r-gofcopula 0.4-1
Propagated dependencies: r-yarrr@0.1.5 r-vinecopula@2.6.1 r-sparsegrid@0.8.2 r-r-utils@2.12.3 r-progress@1.2.3 r-numderiv@2016.8-1.1 r-mass@7.3-61 r-foreach@1.5.2 r-dosnow@1.0.20 r-crayon@1.5.3 r-copula@1.1-6
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gofCopula
Licenses: GPL 3+
Synopsis: Goodness-of-Fit Tests for Copulae
Description:

Several Goodness-of-Fit (GoF) tests for Copulae are provided. A new hybrid test, Zhang et al. (2016) <doi:10.1016/j.jeconom.2016.02.017> is implemented which supports all of the individual tests in the package, e.g. Genest et al. (2009) <doi:10.1016/j.insmatheco.2007.10.005>. Estimation methods for the margins are provided and all the tests support parameter estimation and predefined values. The parameters are estimated by pseudo maximum likelihood but if it fails the estimation switches automatically to inversion of Kendall's tau. For reproducibility of results, the functions support the definition of seeds. Also all the tests support automatized parallelization of the bootstrapping tasks. The package provides an interface to perform new GoF tests by submitting the test statistic.

r-chisquare 1.1.1
Propagated dependencies: r-gt@1.0.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=chisquare
Licenses: GPL 2+
Synopsis: Chi-Square and G-Square Test of Independence, Power and Residual Analysis, Measures of Categorical Association
Description:

This package provides the facility to perform the chi-square and G-square test of independence, calculates the retrospective power of the traditional chi-square test, compute permutation and Monte Carlo p-value, and provides measures of association for tables of any size such as Phi, Phi corrected, odds ratio with 95 percent CI and p-value, Yule Q and Y, adjusted contingency coefficient, Cramer's V, V corrected, V standardised, bias-corrected V, W, Cohen's w, Goodman-Kruskal's lambda, and tau. It also calculates standardised, moment-corrected standardised, and adjusted standardised residuals, and their significance, as well as the Quetelet Index, IJ association factor, and adjusted standardised counts. It also computes the chi-square-maximising version of the input table. Different outputs are returned in nicely formatted tables.

r-varshrink 0.3.1
Propagated dependencies: r-vars@1.6-1 r-strucchange@1.5-4 r-mvtnorm@1.3-2 r-mass@7.3-61 r-corpcor@1.6.10 r-ars@0.8
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/namgillee/VARshrink/
Licenses: GPL 3
Synopsis: Shrinkage Estimation Methods for Vector Autoregressive Models
Description:

Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) <doi:10.2307/1268518>, a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) <doi:10.1186/1471-2105-8-S2-S3>, and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) <doi:10.1016/j.csda.2016.03.007> and Ni and Sun (2005) <doi:10.1198/073500104000000622>.

r-msquality 1.6.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-spectra@1.16.0 r-shinydashboard@0.7.2 r-shiny@1.8.1 r-rmzqc@0.5.5 r-rlang@1.1.4 r-protgenerics@1.38.0 r-plotly@4.10.4 r-msexperiment@1.8.0 r-msdata@0.46.0 r-htmlwidgets@1.6.4 r-ggplot2@3.5.1 r-biocparallel@1.40.0
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://www.github.com/tnaake/MsQuality/
Licenses: GPL 3
Synopsis: MsQuality - Quality metric calculation from Spectra and MsExperiment objects
Description:

The MsQuality provides functionality to calculate quality metrics for mass spectrometry-derived, spectral data at the per-sample level. MsQuality relies on the mzQC framework of quality metrics defined by the Human Proteom Organization-Proteomics Standards Initiative (HUPO-PSI). These metrics quantify the quality of spectral raw files using a controlled vocabulary. The package is especially addressed towards users that acquire mass spectrometry data on a large scale (e.g. data sets from clinical settings consisting of several thousands of samples). The MsQuality package allows to calculate low-level quality metrics that require minimum information on mass spectrometry data: retention time, m/z values, and associated intensities. MsQuality relies on the Spectra package, or alternatively the MsExperiment package, and its infrastructure to store spectral data.

r-alphasimr 1.6.1
Propagated dependencies: r-rdpack@2.6.1 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-r6@2.5.1 r-bh@1.84.0-0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/gaynorr/AlphaSimR
Licenses: Expat
Synopsis: Breeding Program Simulations
Description:

The successor to the AlphaSim software for breeding program simulation [Faux et al. (2016) <doi:10.3835/plantgenome2016.02.0013>]. Used for stochastic simulations of breeding programs to the level of DNA sequence for every individual. Contained is a wide range of functions for modeling common tasks in a breeding program, such as selection and crossing. These functions allow for constructing simulations of highly complex plant and animal breeding programs via scripting in the R software environment. Such simulations can be used to evaluate overall breeding program performance and conduct research into breeding program design, such as implementation of genomic selection. Included is the Markovian Coalescent Simulator ('MaCS') for fast simulation of biallelic sequences according to a population demographic history [Chen et al. (2009) <doi:10.1101/gr.083634.108>].

r-pangoling 1.0.3
Propagated dependencies: r-tidytable@0.11.2 r-tidyselect@1.2.1 r-rstudioapi@0.17.1 r-reticulate@1.40.0 r-memoise@2.0.1 r-data-table@1.16.2 r-cachem@1.1.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://docs.ropensci.org/pangoling/
Licenses: Expat
Synopsis: Access to Large Language Model Predictions
Description:

This package provides access to word predictability estimates using large language models (LLMs) based on transformer architectures via integration with the Hugging Face ecosystem <https://huggingface.co/>. The package interfaces with pre-trained neural networks and supports both causal/auto-regressive LLMs (e.g., GPT-2') and masked/bidirectional LLMs (e.g., BERT') to compute the probability of words, phrases, or tokens given their linguistic context. For details on GPT-2 and causal models, see Radford et al. (2019) <https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf>, for details on BERT and masked models, see Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a straightforward estimation of word predictability, the package facilitates research in psycholinguistics, computational linguistics, and natural language processing (NLP).

r-qountstat 0.1.1
Propagated dependencies: r-multcomp@1.4-26
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://cran.r-project.org/package=qountstat
Licenses: Expat
Synopsis: Statistical Analysis of Count Data and Quantal Data
Description:

This package provides methods for statistical analysis of count data and quantal data. For the analysis of count data an implementation of the Closure Principle Computational Approach Test ("CPCAT") is provided (Lehmann, R et al. (2016) <doi:10.1007/s00477-015-1079-4>), as well as an implementation of a "Dunnett GLM" approach using a Quasi-Poisson regression (Hothorn, L, Kluxen, F (2020) <doi:10.1101/2020.01.15.907881>). For the analysis of quantal data an implementation of the Closure Principle Fisherâ Freemanâ Halton test ("CPFISH") is provided (Lehmann, R et al. (2018) <doi:10.1007/s00477-017-1392-1>). P-values and no/lowest observed (adverse) effect concentration values are calculated. All implemented methods include further functions to evaluate the power and the minimum detectable difference using a bootstrapping approach.

r-archidart 3.4
Propagated dependencies: r-xml@3.99-0.17 r-sp@2.1-4 r-gtools@3.9.5 r-geometry@0.5.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://archidart.github.io/
Licenses: GPL 2
Synopsis: Plant Root System Architecture Analysis Using DART and RSML Files
Description:

Analysis of complex plant root system architectures (RSA) using the output files created by Data Analysis of Root Tracings (DART), an open-access software dedicated to the study of plant root architecture and development across time series (Le Bot et al (2010) "DART: a software to analyse root system architecture and development from captured images", Plant and Soil, <DOI:10.1007/s11104-009-0005-2>), and RSA data encoded with the Root System Markup Language (RSML) (Lobet et al (2015) "Root System Markup Language: toward a unified root architecture description language", Plant Physiology, <DOI:10.1104/pp.114.253625>). More information can be found in Delory et al (2016) "archiDART: an R package for the automated computation of plant root architectural traits", Plant and Soil, <DOI:10.1007/s11104-015-2673-4>.

r-popdesign 1.1.0
Propagated dependencies: r-magick@2.8.5 r-knitr@1.49 r-iso@0.0-21
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PoPdesign
Licenses: GPL 2
Synopsis: Posterior Predictive (PoP) Design for Phase I Clinical Trials
Description:

The primary goal of phase I clinical trials is to find the maximum tolerated dose (MTD). To reach this objective, we introduce a new design for phase I clinical trials, the posterior predictive (PoP) design. The PoP design is an innovative model-assisted design that is as simply as the conventional algorithmic designs as its decision rules can be pre-tabulated prior to the onset of trial, but is of more flexibility of selecting diverse target toxicity rates and cohort sizes. The PoP design has desirable properties, such as coherence and consistency. Moreover, the PoP design provides better empirical performance than the BOIN and Keyboard design with respect to high average probabilities of choosing the MTD and slightly lower risk of treating patients at subtherapeutic or overly toxic doses.

r-spotlight 1.10.0
Propagated dependencies: r-sparsematrixstats@1.18.0 r-singlecellexperiment@1.28.1 r-nnls@1.6 r-nmf@0.28 r-matrixstats@1.4.1 r-matrix@1.7-1 r-ggplot2@3.5.1
Channel: guix-bioc
Location: guix-bioc/packages/s.scm (guix-bioc packages s)
Home page: https://github.com/MarcElosua/SPOTlight
Licenses: GPL 3
Synopsis: `SPOTlight`: Spatial Transcriptomics Deconvolution
Description:

`SPOTlight`provides a method to deconvolute spatial transcriptomics spots using a seeded NMF approach along with visualization tools to assess the results. Spatially resolved gene expression profiles are key to understand tissue organization and function. However, novel spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots).

r-glmmisrep 0.1.1
Propagated dependencies: r-poisson-glm-mix@1.4 r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glmMisrep
Licenses: GPL 2+
Synopsis: Generalized Linear Models Adjusting for Misrepresentation
Description:

Fit Generalized Linear Models to continuous and count outcomes, as well as estimate the prevalence of misrepresentation of an important binary predictor. Misrepresentation typically arises when there is an incentive for the binary factor to be misclassified in one direction (e.g., in insurance settings where policy holders may purposely deny a risk status in order to lower the insurance premium). This is accomplished by treating a subset of the response variable as resulting from a mixture distribution. Model parameters are estimated via the Expectation Maximization algorithm and standard errors of the estimates are obtained from closed forms of the Observed Fisher Information. For an introduction to the models and the misrepresentation framework, see Xia et. al., (2023) <https://variancejournal.org/article/73151-maximum-likelihood-approaches-to-misrepresentation-models-in-glm-ratemaking-model-comparisons>.

r-sparsedfm 1.0
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-matrix@1.7-1 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sparseDFM
Licenses: GPL 3+
Synopsis: Estimate Dynamic Factor Models with Sparse Loadings
Description:

Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <arXiv:2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in C++ and linked to R via RcppArmadillo'.

r-cooltools 2.4
Propagated dependencies: r-sp@2.1-4 r-rcpp@1.0.13-1 r-raster@3.6-30 r-randtoolbox@2.0.5 r-pracma@2.4.4 r-png@0.1-8 r-plotrix@3.8-4 r-mass@7.3-61 r-jpeg@0.1-10 r-fnn@1.1.4.1 r-data-table@1.16.2 r-cubature@2.1.1 r-celestial@1.4.6 r-bit64@4.5.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cooltools
Licenses: GPL 3
Synopsis: Practical Tools for Scientific Computations and Visualizations
Description:

Collection of routines for efficient scientific computations in physics and astrophysics. These routines include utility functions, numerical computation tools, as well as visualisation tools. They can be used, for example, for generating random numbers from spherical and custom distributions, information and entropy analysis, special Fourier transforms, two-point correlation estimation (e.g. as in Landy & Szalay (1993) <doi:10.1086/172900>), binning & gridding of point sets, 2D interpolation, Monte Carlo integration, vector arithmetic and coordinate transformations. Also included is a non-exhaustive list of important constants and cosmological conversion functions. The graphics routines can be used to produce and export publication-ready scientific plots and movies, e.g. as used in Obreschkow et al. (2020, MNRAS Vol 493, Issue 3, Pages 4551â 4569). These routines include special color scales, projection functions, and bitmap handling routines.

r-holobiont 0.1.2
Propagated dependencies: r-tibble@3.2.1 r-phytools@2.4-4 r-phyloseq@1.50.0 r-ggplot2@3.5.1 r-dplyr@1.1.4 r-ape@5.8
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=holobiont
Licenses: GPL 2
Synopsis: Microbiome Analysis Tools
Description:

We provide functions for identifying the core community phylogeny in any microbiome, drawing phylogenetic Venn diagrams, calculating the core Faithâ s PD for a set of communities, and calculating the core UniFrac distance between two sets of communities. All functions rely on construction of a core community phylogeny, which is a phylogeny where branches are defined based on their presence in multiple samples from a single type of habitat. Our package provides two options for constructing the core community phylogeny, a tip-based approach, where the core community phylogeny is identified based on incidence of leaf nodes and a branch-based approach, where the core community phylogeny is identified based on incidence of individual branches. We suggest use of the microViz package, which can be downloaded from the website provided under Additional repositories.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249