Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a correlation-based batch process for fast, accurate imputation for high dimensional missing data problems via chained random forests. See Waggoner (2023) <doi:10.1007/s00180-023-01325-9> for more on hdImpute', Stekhoven and Bühlmann (2012) <doi:10.1093/bioinformatics/btr597> for more on missForest', and Mayer (2022) <https://github.com/mayer79/missRanger> for more on missRanger'.
This package provides a collection of datasets of human-computer interaction (HCI) experiments. Each dataset is from an HCI paper, with all fields described and the original publication linked. All paper authors of included data have consented to the inclusion of their data in this package. The datasets include data from a range of HCI studies, such as pointing tasks, user experience ratings, and steering tasks. Dataset sources: Bergström et al. (2022) <doi:10.1145/3490493>; Dalsgaard et al. (2021) <doi:10.1145/3489849.3489853>; Larsen et al. (2019) <doi:10.1145/3338286.3340115>; Lilija et al. (2019) <doi:10.1145/3290605.3300676>; Pohl and Murray-Smith (2013) <doi:10.1145/2470654.2481307>; Pohl and Mottelson (2022) <doi:10.3389/frvir.2022.719506>.
Using hybrid data, this package created a vividly colored hybrid heat map. The input is two files which are auto-selected. The first file has three columns, the first two for pairs of species, with the third column for the hybrid experiment code (an integer). The second file is a list of code and their descriptions in two columns. The output is a figure showing the hybrid heat map with a color legend.
In some cases you will have data in a histogram format, where you have a vector of all possible observations, and a vector of how many times each observation appeared. You could expand this into a single 1D vector, but this may not be advisable if the counts are extremely large. HistDat allows for the calculation of summary statistics without the need for expanding your data.
Takes the MinT implementation of the hts'<https://cran.r-project.org/package=hts> package and adapts it to allow degenerate hierarchical structures. Instead of the "nodes" argument, this function takes an S matrix which is more versatile in the structures it allows. For a demo, see Steinmeister and Pauly (2024)<doi:10.15488/17729>. The MinT algorithm is based on Wickramasuriya et al. (2019)<doi:10.1080/01621459.2018.1448825>.
The Hybrid design is a combination of model-assisted design (e.g., the modified Toxicity Probability Interval design) with dose-toxicity model-based design for phase I dose-finding studies. The hybrid design controls the overdosing toxicity well and leads to a recommended dose closer to the true maximum tolerated dose (MTD) due to its ability to calibrate for an intermediate dose. More details can be found in Liao et al. 2022 <doi:10.1002/ijc.34203>.
Events from individual hydrologic time series are extracted, and events are matched across multiple time series. The package has been applied in studies such as Wasko and Guo (2022) <doi:10.1002/hyp.14563> and Mohammadpour Khoie, Guo and Wasko (2025) <doi:10.1016/j.envsoft.2025.106521>.
Develops algorithms for fitting, prediction, simulation and initialization of the following models (1)- hidden hybrid Markov/semi-Markov model, introduced by Guedon (2005) <doi:10.1016/j.csda.2004.05.033>, (2)- nonparametric mixture of B-splines emissions (Langrock et al., 2015 <doi:10.1111/biom.12282>), (3)- regime switching regression model (Kim et al., 2008 <doi:10.1016/j.jeconom.2007.10.002>) and auto-regressive hidden hybrid Markov/semi-Markov model, (4)- spline-based nonparametric estimation of additive state-switching models (Langrock et al., 2018 <doi:10.1111/stan.12133>) (5)- robust emission model proposed by Qin et al, 2024 <doi:10.1007/s10479-024-05989-4> (6)- several emission distributions, including mixture of multivariate normal (which can also handle missing data using EM algorithm) and multi-nomial emission (for modeling polymer or DNA sequences) (7)- tools for prediction of future state sequence, computing the score of a new sequence, splitting the samples and sequences to train and test sets, computing the information measures of the models, computing the residual useful lifetime (reliability) and many other useful tools ... (read for more description: Amini et al., 2022 <doi:10.1007/s00180-022-01248-x> and its arxiv version: <doi:10.48550/arXiv.2109.12489>).
Graphical model is an informative and powerful tool to explore the conditional dependence relationships among variables. The traditional Gaussian graphical model and its extensions either have a Gaussian assumption on the data distribution or assume the data are homogeneous. However, there are data with complex distributions violating these two assumptions. For example, the air pollutant concentration records are non-negative and, hence, non-Gaussian. Moreover, due to climate changes, distributions of these concentration records in different months of a year can be far different, which means it is uncertain whether datasets from different months are homogeneous. Methods with a Gaussian or homogeneous assumption may incorrectly model the conditional dependence relationships among variables. Therefore, we propose a heterogeneous graphical model for non-negative data (HGMND) to simultaneously cluster multiple datasets and estimate the conditional dependence matrix of variables from a non-Gaussian and non-negative exponential family in each cluster.
Historical borrowing in clinical trials can improve precision and operating characteristics. This package supports a longitudinal hierarchical model to borrow historical control data from other studies to better characterize the control response of the current study. It also quantifies the amount of borrowing through longitudinal benchmark models (independent and pooled). The hierarchical model approach to historical borrowing is discussed by Viele et al. (2013) <doi:10.1002/pst.1589>.
This package creates and plots 2D and 3D hive plots. Hive plots are a unique method of displaying networks of many types in which node properties are mapped to axes using meaningful properties rather than being arbitrarily positioned. The hive plot concept was invented by Martin Krzywinski at the Genome Science Center (www.hiveplot.net/). Keywords: networks, food webs, linnet, systems biology, bioinformatics.
Comfortable ways to work with hyperspectral data sets. I.e. spatially or time-resolved spectra, or spectra with any other kind of information associated with each of the spectra. The spectra can be data as obtained in XRF, UV/VIS, Fluorescence, AES, NIR, IR, Raman, NMR, MS, etc. More generally, any data that is recorded over a discretized variable, e.g. absorbance = f(wavelength), stored as a vector of absorbance values for discrete wavelengths is suitable.
Shiny-App that allows to annotate vectors of texts to predefined categories by hand.
This package provides a way to display word clouds in R. The word cloud is a html widget, so you can use it in interactive documents and shiny applications.
This package provides various tests for comparing high-dimensional mean vectors in two sample populations.
Probabilistic models describing the behavior of workload and queue on a High Performance Cluster and computing GRID under FIFO service discipline basing on modified Kiefer-Wolfowitz recursion. Also sample data for inter-arrival times, service times, number of cores per task and waiting times of HPC of Karelian Research Centre are included, measurements took place from 06/03/2009 to 02/30/2011. Functions provided to import/export workload traces in Standard Workload Format (swf). Stability condition of the model may be verified either exactly, or approximately. Stability analysis: see Rumyantsev and Morozov (2017) <doi:10.1007/s10479-015-1917-2>, workload recursion: see Rumyantsev (2014) <doi:10.1109/PDCAT.2014.36>.
An R port of the hashids library. hashids generates YouTube-like hashes from integers or vector of integers. Hashes generated from integers are relatively short, unique and non-seqential. hashids can be used to generate unique ids for URLs and hide database row numbers from the user. By default hashids will avoid generating common English cursewords by preventing certain letters being next to each other. hashids are not one-way: it is easy to encode an integer to a hashid and decode a hashid back into an integer.
This package provides a simple and time saving multiple linear regression function (OLS) with interpretation, optional bootstrapping, effect size calculation and all tested requirements.
Enhances the H2O platform by providing tools for detailed evaluation of machine learning models. It includes functions for bootstrapped performance evaluation, extended F-score calculations, and various other metrics, aimed at improving model assessment.
Package that simplifies the use of the HPZone API. Most of the annoying and labor-intensive parts of the interface are handled by wrapper functions. Note that the API and its details are not publicly available. Information can be found at <https://www.ggdghorkennisnet.nl/groep/726-platform-infectieziekte-epidemiologen/documenten/map/9609> for those with access.
Functions, data sets, analyses and examples from the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2006). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available.
This tool identifies hydropeaking events from raw time-series flow record, a rapid flow variation induced by the hourly-adjusted electricity market. The novelty of HEDA is to use vector angle instead of the first-order derivative to detect change points which not only largely improves the computing efficiency but also accounts for the rate of change of the flow variation. More details <doi:10.1016/j.jhydrol.2021.126392>.
Higher order likelihood inference is a promising approach for analyzing small sample size data. The holi package provides web applications for higher order likelihood inference. It currently supports linear, logistic, and Poisson generalized linear models through the rstar_glm() function, based on Pierce and Bellio (2017) <doi:10.1111/insr.12232> and likelihoodAsy'. The package offers two main features: LA_rstar(), which launches an interactive shiny application allowing users to fit models with rstar_glm() through their web browser, and sim_rstar_glm_pgsql(), which streamlines the process of launching a web-based shiny simulation application that saves results to a user-created PostgreSQL database.
This package provides a suite of functions to ping URLs and to time HTTP requests'. Designed to work with httr'.