Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Download ifo business survey data and more time series from ifo institute <https://www.ifo.de/en/ifo-time-series>.
An implementation to reconstruct individual patient data from Kaplan-Meier (K-M) survival curves, visualize and assess the accuracy of the reconstruction, then perform secondary analysis on the reconstructed data. We involve a simple function to extract the coordinates form the published K-M curves. The function is developed based on Poisot T. â s digitize package (2011) <doi:10.32614/RJ-2011-004> . For more complex and tangled together graphs, digitizing software, such as DigitizeIt (for MAC or windows) or ScanIt'(for windows) can be used to get the coordinates. Additional information should also be involved to increase the accuracy, like numbers of patients at risk (often reported at 5-10 time points under the x-axis of the K-M graph), total number of patients, and total number of events. The package implements the modified iterative K-M estimation algorithm (modified-iKM) improved upon the approach proposed by Guyot (2012) <doi:10.1186/1471-2288-12-9> with some modifications.
This package provides color palettes from Impressionism and post-Impressionism artworks. This package allows to select colors combinations while looking at the original paintings where colors were sampled from.
Computes characteristics of independent rainfall events (duration, total rainfall depth, and intensity) extracted from a sub-daily rainfall time series based on the inter-event time definition (IETD) method. To have a reference value of IETD, it also analyzes/computes IETD values through three methods: autocorrelation analysis, the average annual number of events analysis, and coefficient of variation analysis. Ideal for analyzing the sensitivity of IETD to characteristics of independent rainfall events. Adams B, Papa F (2000) <ISBN: 978-0-471-33217-6>. Joo J et al. (2014) <doi:10.3390/w6010045>. Restrepo-Posada P, Eagleson P (1982) <doi:10.1016/0022-1694(82)90136-6>.
Fits the (randomized drift) inverse Gaussian distribution to survival data. The model is described in Aalen OO, Borgan O, Gjessing HK. Survival and Event History Analysis. A Process Point of View. Springer, 2008. It is based on describing time to event as the barrier hitting time of a Wiener process, where drift towards the barrier has been randomized with a Gaussian distribution. The model allows covariates to influence starting values of the Wiener process and/or average drift towards a barrier, with a user-defined choice of link functions.
Creation of tables of summary statistics or counts for clinical data (for TLFs'). These tables can be exported as in-text table (with the flextable package) for a Clinical Study Report (Word format) or a topline presentation (PowerPoint format), or as interactive table (with the DT package) to an html document for clinical data review.
This package contains tools for instrumental variables estimation. Currently, non-parametric bounds, two-stage estimation and G-estimation are implemented. Balke, A. and Pearl, J. (1997) <doi:10.2307/2965583>, Vansteelandt S., Bowden J., Babanezhad M., Goetghebeur E. (2011) <doi:10.1214/11-STS360>.
This package provides a pipeline to process nominal mass spectrometry data to create .msp files for untargeted analyses.
Implementations of the weighted Kozachenko-Leonenko entropy estimator and independence tests based on this estimator, (Kozachenko and Leonenko (1987) <http://mi.mathnet.ru/eng/ppi797>). Also includes a goodness-of-fit test for a linear model which is an independence test between covariates and errors.
This package provides a collection of Item Response Theory (IRT) and Computerized Adaptive Testing (CAT) functions that are used in psychometrics.
Applying the family of the Bayesian Expectation-Maximization-Maximization (BEMM) algorithm to estimate: (1) Three parameter logistic (3PL) model proposed by Birnbaum (1968, ISBN:9780201043105); (2) four parameter logistic (4PL) model proposed by Barton & Lord (1981) <doi:10.1002/j.2333-8504.1981.tb01255.x>; (3) one parameter logistic guessing (1PLG) and (4) one parameter logistic ability-based guessing (1PLAG) models proposed by San Martà n et al (2006) <doi:10.1177/0146621605282773>. The BEMM family includes (1) the BEMM algorithm for 3PL model proposed by Guo & Zheng (2019) <doi:10.3389/fpsyg.2019.01175>; (2) the BEMM algorithm for 1PLG model and (3) the BEMM algorithm for 1PLAG model proposed by Guo, Wu, Zheng, & Chen (2021) <doi:10.1177/0146621621990761>; (4) the BEMM algorithm for 4PL model proposed by Zheng, Guo, & Kern (2021) <doi:10.1177/21582440211052556>; and (5) their maximum likelihood estimation versions proposed by Zheng, Meng, Guo, & Liu (2018) <doi:10.3389/fpsyg.2017.02302>. Thus, both Bayesian modal estimates and maximum likelihood estimates are available.
This software does Multi-Reader, Multi-Case (MRMC) analyses of data from imaging studies where clinicians (readers) evaluate patient images (cases). What does this mean? ... Many imaging studies are designed so that every reader reads every case in all modalities, a fully-crossed study. In this case, the data is cross-correlated, and we consider the readers and cases to be cross-correlated random effects. An MRMC analysis accounts for the variability and correlations from the readers and cases when estimating variances, confidence intervals, and p-values. The functions in this package can treat arbitrary study designs and studies with missing data, not just fully-crossed study designs. An overview of this software, including references presenting details on the methods, can be found here: <https://www.fda.gov/medical-devices/science-and-research-medical-devices/imrmc-software-do-multi-reader-multi-case-statistical-analysis-reader-studies>.
This package provides functions for analyzing multiple choice items. These analyses include the convertion of student response into binaty data (correct/incorrect), the computation of the number of corrected responses and grade for each subject, the calculation of item difficulty and discrimination, the computation of the frecuency and point-biserial correlation for each distractor and the graphical analysis of each item.
It facilitates the calculation of 40 different insulin sensitivity indices based on fasting, oral glucose tolerance test (OGTT), lipid (adipose), and tracer (palmitate and glycerol rate) and dxa (fat mass) measurement values. It enables easy and accurate assessment of insulin sensitivity, critical for understanding and managing metabolic disorders like diabetes and obesity. Indices calculated are described in Gastaldelli (2022). <doi:10.1002/oby.23503> and Lorenzo (2010). <doi:10.1210/jc.2010-1144>.
It provides a generic set of tools for initializing a synthetic population with each individual in specific disease states, and making transitions between those disease states according to the rates calculated on each timestep. The new version 1.0.0 has C++ code integration to make the functions run faster. It has also a higher level function to actually run the transitions for the number of timesteps that users specify. Additional functions will follow for changing attributes on demographic, health belief and movement.
It constructs a Consensus Network which identifies the general information of all the layers and Specific Networks for each layer with the information present only in that layer and not in all the others.The method is described in Policastro et al. (2024) "INet for network integration" <doi:10.1007/s00180-024-01536-8>.
Generates three inter-related genomic datasets: methylation, gene expression and protein expression having user specified cluster patterns. The simulation utilizes the realistic inter- and intra- relationships from real DNA methylation, mRNA expression and protein expression data from the TCGA ovarian cancer study, Chalise (2016) <doi:10.1016/j.cmpb.2016.02.011>.
This package provides an R version of the InterVA5 software (<http://www.byass.uk/interva/>) for coding cause of death from verbal autopsies. It also provides simple graphical representation of individual and population level statistics.
Fast and multi-threaded implementation of isolation forest (Liu, Ting, Zhou (2008) <doi:10.1109/ICDM.2008.17>), extended isolation forest (Hariri, Kind, Brunner (2018) <doi:10.48550/arXiv.1811.02141>), SCiForest (Liu, Ting, Zhou (2010) <doi:10.1007/978-3-642-15883-4_18>), fair-cut forest (Cortes (2021) <doi:10.48550/arXiv.2110.13402>), robust random-cut forest (Guha, Mishra, Roy, Schrijvers (2016) <http://proceedings.mlr.press/v48/guha16.html>), and customizable variations of them, for isolation-based outlier detection, clustered outlier detection, distance or similarity approximation (Cortes (2019) <doi:10.48550/arXiv.1910.12362>), isolation kernel calculation (Ting, Zhu, Zhou (2018) <doi:10.1145/3219819.3219990>), and imputation of missing values (Cortes (2019) <doi:10.48550/arXiv.1911.06646>), based on random or guided decision tree splitting, and providing different metrics for scoring anomalies based on isolation depth or density (Cortes (2021) <doi:10.48550/arXiv.2111.11639>). Provides simple heuristics for fitting the model to categorical columns and handling missing data, and offers options for varying between random and guided splits, and for using different splitting criteria.
Assists in generating categorical clustered outcome data, estimating the Intracluster Correlation Coefficient (ICC) for nominal or ordinal data with 2+ categories under the resampling and method of moments (MoM) methods, with confidence intervals.
This package provides a set of utilities for manipulating index numbers series including chain-linking, re-referencing, and computing growth rates.
This package contains implementations of the integrative Cox model with uncertain event times proposed by Wang, et al. (2020) <doi:10.1214/19-AOAS1287>, the regularized Cox cure rate model with uncertain event status proposed by Wang, et al. (2023) <doi:10.1007/s12561-023-09374-w>, and other survival analysis routines including the Cox cure rate model proposed by Kuk and Chen (1992) <doi:10.1093/biomet/79.3.531> via an EM algorithm proposed by Sy and Taylor (2000) <doi:10.1111/j.0006-341X.2000.00227.x>, the regularized Cox cure rate model with elastic net penalty following Masud et al. (2018) <doi:10.1177/0962280216677748>.
Interlinearized glossed texts (IGT) are used in descriptive linguistics for representing a morphological analysis of a text through a morpheme-by-morpheme gloss. InterlineaR provide a set of functions that targets several popular formats of IGT ('SIL Toolbox', EMELD XML') and that turns an IGT into a set of data frames following a relational model (the tables represent the different linguistic units: texts, sentences, word, morphems). The same pieces of software ('SIL FLEX', SIL Toolbox') typically produce dictionaries of the morphemes used in the glosses. InterlineaR provide a function for turning the LIFT XML dictionary format into a set of data frames following a relational model in order to represent the dictionary entries, the sense(s) attached to the entries, the example(s) attached to senses, etc.
This package provides an up-to-date version of the InvaCost database (<doi:10.6084/m9.figshare.12668570>) in R, and several functions to analyse the costs of invasive alien species (<doi:10.1111/2041-210X.13929>).