Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extract and replace elements using indices that start from zero (rather than one), as is common in mathematical notation and other programming languages.
This package implements the compartment model from Tokars (2018) <doi:10.1016/j.vaccine.2018.10.026>. This enables quantification of population-wide impact of vaccination against vaccine-preventable diseases such as influenza.
Convert between bookmaker odds and probabilities. Eight different algorithms are available, including basic normalization, Shin's method (Hyun Song Shin, (1992) <doi:10.2307/2234526>), and others.
Estimates the probability of informed trading (PIN) initially introduced by Easley et. al. (1996) <doi:10.1111/j.1540-6261.1996.tb04074.x> . Contribution of the package is that it uses likelihood factorizations of Easley et. al. (2010) <doi:10.1017/S0022109010000074> (EHO factorization) and Lin and Ke (2011) <doi:10.1016/j.finmar.2011.03.001> (LK factorization). Moreover, the package uses different estimation algorithms. Specifically, the grid-search algorithm proposed by Yan and Zhang (2012) <doi:10.1016/j.jbankfin.2011.08.003> , hierarchical agglomerative clustering approach proposed by Gan et. al. (2015) <doi:10.1080/14697688.2015.1023336> and later extended by Ersan and Alici (2016) <doi:10.1016/j.intfin.2016.04.001> .
This package provides a variety of methods for estimating intrinsic dimension of data sets (i.e the manifold or Hausdorff dimension of the support of the distribution that generated the data) as reviewed in Johnsson, K. (2016, ISBN:978-91-7623-921-6) and Johnsson, K., Soneson, C. and Fontes, M. (2015) <doi:10.1109/TPAMI.2014.2343220>. Furthermore, to evaluate the performance of these estimators, functions for generating data sets with given intrinsic dimensions are provided.
Density, spectral density, and regression estimation using infinite order flat-top kernels.
This package provides functions for converting time series of spatial abundance or density data in raster format to vector fields of population movement using the digital image correlation technique. More specifically, the functions in the package compute cross-covariance using discrete fast Fourier transforms for computational efficiency. Vectors in vector fields point in the direction of highest two dimensional cross-covariance. The package has a novel implementation of the digital image correlation algorithm that is designed to detect persistent directional movement when image time series extend beyond a sequence of two raster images.
This package provides a pair of functions for getting and setting the IEEE rounding mode for floating point computations.
This package provides user-friendly functions for programmatic access to macroeconomic data from the International Monetary Fund's SDMX 3.0 IMF Data API <https://data.imf.org/en/Resource-Pages/IMF-API>.
Set of functions to impute missing rare earth data, calculate La and Pr concentrations and Ce anomalies in zircons based on the Chondrite-Onuma and Chondrite-Lattice of Carrasco-Godoy and Campbell (2023) <doi:10.1007/s00410-023-02025-9> and the Logarithmic regression from Zhong et al. (2019) <doi:10.1007/s00710-019-00682-y>.
This package implements a nonparametric maximum likelihood method for assessing potentially time-varying vaccine efficacy (VE) against SARS-CoV-2 infection under staggered enrollment and time-varying community transmission, allowing crossover of placebo volunteers to the vaccine arm. Lin, D. Y., Gu, Y., Zeng, D., Janes, H. E., and Gilbert, P. B. (2021) <doi:10.1093/cid/ciab630>.
This package provides tools to download, process, and analyze data from the International Monetary Fund's World Economic Outlook (WEO) database <https://www.imf.org/en/Publications/SPROLLs/world-economic-outlook-databases>. Functions support downloading complete WEO releases, accessing specific economic indicators for selected countries, and listing available data.
An implementation of corrected sandwich variance (CSV) estimation method for making inference of marginal hazard ratios (HR) in inverse probability weighted (IPW) Cox model without and with clustered data, proposed by Shu, Young, Toh, and Wang (2019) in their paper under revision for Biometrics. Both conventional inverse probability weights and stabilized weights are implemented. Logistic regression model is assumed for propensity score model.
Sampler and post-processing functions for semi-parametric Bayesian infinite factor models, motivated by the Multiplicative Gamma Shrinkage Prior of Bhattacharya and Dunson (2011) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419391/>. Contains component C++ functions for building samplers for linear and 2-way interaction factor models using the multiplicative gamma and Dirichlet-Laplace shrinkage priors. The package also contains post processing functions to return matrices that display rotational ambiguity to identifiability through successive application of orthogonalization procedures and resolution of column label and sign switching. This package was developed with the support of the National Institute of Environmental Health Sciences grant 1R01ES028804-01.
Interaction and analysis of multiple response data, along with other tools for analysing these types of data including missing value analysis and calculation of standard errors for a range of covariance matrix results (proportions, multinomial, independent samples, and multiple response).
Based on large margin principle, this package performs feature selection methods: "IM4E"(Iterative Margin-Maximization under Max-Min Entropy Algorithm); "Immigrate"(Iterative Max-Min Entropy Margin-Maximization with Interaction Terms Algorithm); "BIM"(Boosted version of IMMIGRATE algorithm); "Simba"(Iterative Search Margin Based Algorithm); "LFE"(Local Feature Extraction Algorithm). This package also performs prediction for the above feature selection methods.
The correction is achieved under the assumption that non-migrating cells of the essay approximately form a quadratic flow profile due to frictional effects, compare law of Hagen-Poiseuille for flow in a tube. The script fits a conical plane to give xyz-coordinates of the cells. It outputs the number of migrated cells and the new corrected coordinates.
This package provides functions to estimate the probability to receive the observed treatment, based on individual characteristics. The inverse of these probabilities can be used as weights when estimating causal effects from observational data via marginal structural models. Both point treatment situations and longitudinal studies can be analysed. The same functions can be used to correct for informative censoring.
Fits large-scale regression models with a penalty that restricts the maximum number of non-zero regression coefficients to a prespecified value. While Chu et al (2020) <doi:10.1093/gigascience/giaa044> describe the basic algorithm, this package uses Cyclops for an efficient implementation.
An R client for the ipbase.com IP Geolocation API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://ipbase.com/docs> .
This package provides a collection of Irucka Embry's miscellaneous USGS data sets (USGS Parameter codes with fixed values, USGS global time zone codes, and US Air Force Global Engineering Weather Data). Irucka created these data sets while a Cherokee Nation Technology Solutions (CNTS) United States Geological Survey (USGS) Contractor and/or USGS employee.
The Row-column designs are widely recommended for experimental situations when there are two well-identified factors that are cross-classified representing known sources of variability. These designs are expected to result a gain in accuracy of estimating treatment comparisons in an experiment as they eliminate the effects of the row and column factors. However, these designs are not readily available when the number of treatments is more than the levels of row and column blocking factors. This package named iRoCoDe generates row-column designs with incomplete rows and columns, by amalgamating two incomplete block designs (D1 and D2). The selection of D1 and D2 (the input designs) can be done from the available incomplete block designs, viz., balanced incomplete block designs/ partially balanced incomplete block designs/ t-designs. (Mcsorley, J.P., Phillips, N.C., Wallis, W.D. and Yucas, J.L. (2005).<doi:10.1007/s10623-003-6149-9>).
Estimates the intraclass correlation coefficient for trajectory data using a matrix of distances between trajectories. The distances implemented are the extended Hausdorff distances (Min et al. 2007) <doi:10.1080/13658810601073315> and the discrete Fréchet distance (Magdy et al. 2015) <doi:10.1109/IntelCIS.2015.7397286>.
Imbalanced domain learning has almost exclusively focused on solving classification tasks, where the objective is to predict cases labelled with a rare class accurately. Such a well-defined approach for regression tasks lacked due to two main factors. First, standard regression tasks assume that each value is equally important to the user. Second, standard evaluation metrics focus on assessing the performance of the model on the most common cases. This package contains methods to tackle imbalanced domain learning problems in regression tasks, where the objective is to predict extreme (rare) values. The methods contained in this package are: 1) an automatic and non-parametric method to obtain such relevance functions; 2) visualisation tools; 3) suite of evaluation measures for optimisation/validation processes; 4) the squared-error relevance area measure, an evaluation metric tailored for imbalanced regression tasks. More information can be found in Ribeiro and Moniz (2020) <doi:10.1007/s10994-020-05900-9>.