Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits Hierarchical Bayesian space-Time models for Gaussian data. Furthermore, its functions have been implemented for analysing the fitting qualities of those models.
We provide the monthly number of HIV and antiretroviral therapy (ART) cases of male, female, children and transgender as well as for the whole of Pakistan reported at various treatment centers in Pakistan from January 2016 to December 2021. Related works include: a) Imran, M., Nasir, J. A., & Riaz, S. (2018). Regional pattern of HIV cases in Pakistan. Journal of Postgraduate Medical Institute, 32(1), 9-13. <https://jpmi.org.pk/index.php/jpmi/article/view/2108>.
Fast, model-agnostic implementation of different H-statistics introduced by Jerome H. Friedman and Bogdan E. Popescu (2008) <doi:10.1214/07-AOAS148>. These statistics quantify interaction strength per feature, feature pair, and feature triple. The package supports multi-output predictions and can account for case weights. In addition, several variants of the original statistics are provided. The shape of the interactions can be explored through partial dependence plots or individual conditional expectation plots. DALEX explainers, meta learners ('mlr3', tidymodels', caret') and most other models work out-of-the-box.
Hard drive data: Class of data allowing the easy importation/manipulation of out of memory data sets. The data sets are located on disk but look like in-memory, the syntax for manipulation is similar to data.table'. Operations are performed "chunk-wise" behind the scene.
Structural handling of Finnish identity codes (natural persons and organizations); extract information, check ID validity and diagnostics.
In streaming data analysis, it is crucial to detect significant shifts in the data distribution or the accuracy of predictive models over time, a phenomenon known as concept drift. The package aims to identify when concept drift occurs and provide methodologies for adapting models in non-stationary environments. It offers a range of state-of-the-art techniques for detecting concept drift and maintaining model performance. Additionally, the package provides tools for adapting models in response to these changes, ensuring continuous and accurate predictions in dynamic contexts. Methods for concept drift detection are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.
Estimation of high-dimensional multi-response regression with heterogeneous noises under Heterogeneous group square-root Lasso penalty. For details see: Ren, Z., Kang, Y., Fan, Y. and Lv, J. (2018)<arXiv:1606.03803>.
This package provides a comprehensive suite of spatial functions created to analyze and assess data heterogeneity and climate variability in spatial datasets. This package is specifically designed to address the challenges associated with characterizing and understanding complex spatial patterns in environmental and climate-related data.
Efficient tools for parsing and standardizing Australian addresses from textual data. It utilizes optimized algorithms to accurately identify and extract components of addresses, such as street names, types, and postcodes, especially for large batched data in contexts where sending addresses to internet services may be slow or inappropriate. The core functionality is built on fast string processing techniques to handle variations in address formats and abbreviations commonly found in Australian address data. Designed for data scientists, urban planners, and logistics analysts, the package facilitates the cleaning and normalization of address information, supporting better data integration and analysis in urban studies, geography, and related fields.
Seed germinates through the physical process of water uptake by dry seed driven by the difference in water potential between the seed and the water. There exists seed-to-seed variability in the base seed water potential. Hence, there is a need for a distribution such that a viable seed with its base seed water potential germinates if and only if the soil water potential is more than the base seed water potential. This package estimates the stress tolerance and uniformity parameters of the seed lot for germination under various temperatures by using the hydro-time model of counts of germinated seeds under various water potentials. The distribution of base seed water potential has been considered to follow Normal, Logistic and Extreme value distribution. The estimated proportion of germinated seeds along with the estimates of stress and uniformity parameters are obtained using a generalised linear model. The significance test of the above parameters for within and between temperatures is also performed in the analysis. Details can be found in Kebreab and Murdoch (1999) <doi:10.1093/jxb/50.334.655> and Bradford (2002) <https://www.jstor.org/stable/4046371>.
Distribution free heteroscedastic tests for functional data. The following tests are included in this package: test of no main treatment or contrast effect and no simple treatment effect given in Wang, Higgins, and Blasi (2010) <doi:10.1016/j.spl.2009.11.016>, no main time effect, and no interaction effect based on original observations given in Wang and Akritas (2010a) <doi:10.1080/10485250903171621> and tests based on ranks given in Wang and Akritas (2010b) <doi:10.1016/j.jmva.2010.03.012>.
Inference concerning equilibrium and random mating in autopolyploids. Methods are available to test for equilibrium and random mating at any even ploidy level (>2) in the presence of double reduction at biallelic loci. For autopolyploid populations in equilibrium, methods are available to estimate the degree of double reduction. We also provide functions to calculate genotype frequencies at equilibrium, or after one or several rounds of random mating, given rates of double reduction. The main function is hwefit(). This material is based upon work supported by the National Science Foundation under Grant No. 2132247. The opinions, findings, and conclusions or recommendations expressed are those of the author and do not necessarily reflect the views of the National Science Foundation. For details of these methods, see Gerard (2023a) <doi:10.1111/biom.13722> and Gerard (2023b) <doi:10.1111/1755-0998.13856>.
This package implements an efficient algorithm for fitting the entire regularization path of quantile regression models with elastic-net penalties using a generalized coordinate descent scheme. The framework also supports SCAD and MCP penalties. It is designed for high-dimensional datasets and emphasizes numerical accuracy and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.
An open-source R package to deploys reproducible and flexible labels using layers. The huito package is part of the inkaverse project for developing different procedures and tools used in plant science and experimental designs. Learn more about the inkaverse project at <https://inkaverse.com/>.
This package provides a visualization suite primarily designed for single-cell RNA-sequencing data analysis applications, but adaptable to other purposes as well. It introduces novel plots to represent two-variable and frequency data and optimizes some commonly used plotting options (e.g., correlation, network, density and alluvial plots) for ease of usage and flexibility.
This package provides a wrapper around a CSS library called Hover.css', intended for use in shiny applications.
This package provides a multi-core R package that allows for the statistical modeling of multi-group multivariate mixed data using Gaussian graphical models. Combining the Gaussian copula framework with the fused graphical lasso penalty, the heteromixgm package can handle a wide variety of datasets found in various sciences. The package also includes an option to perform model selection using the AIC, BIC and EBIC information criteria, a function that plots partial correlation graphs based on the selected precision matrices, as well as simulate mixed heterogeneous data for exploratory or simulation purposes and one multi-group multivariate mixed agricultural dataset pertaining to maize yields. The package implements the methodological developments found in Hermes et al. (2024) <doi:10.1080/10618600.2023.2289545>.
This package provides functions implementing change point detection methods using the maximum pairwise Bayes factor approach. Additionally, the package includes tools for generating simulated datasets for comparing and evaluating change point detection techniques.
Set of R functions to be coupled with the xeus-r jupyter kernel in order to drive execution of code in notebook input cells, how R objects are to be displayed in output cells, and handle two way communication with the front end through comms.
Set of tools to help interested researchers to build hospital networks from data on hospitalized patients transferred between hospitals. Methods provided have been used in Donker T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715>, and Nekkab N, Crépey P, Astagneau P, Opatowski L, Temime L. (2020) <doi:10.1038/s41598-020-71212-6>.
This package provides functions and methods for organizing data in hypercubes (i.e., a multi-dimensional cube). Cubes are generated from molten data frames. Each cube can be manipulated with five operations: rotation (change.dimensionOrder()), dicing and slicing (add.selection(), remove.selection()), drilling down (add.aggregation()), and rolling up (remove.aggregation()).
Simulate haplotypes through meioses. Allows specification of population parameters.
This package provides functions for calculating the hazard discrimination summary and its standard errors, as described in Liang and Heagerty (2016) <doi:10.1111/biom.12628>.
Create compressed, interactive HTML (Hypertext Markup Language) reports with embedded Python code, custom JS ('JavaScript') and CSS (Cascading Style Sheets), and wrappers for CanvasXpress plots, networks and more. Based on <https://pypi.org/project/py-report-html/>, its sister project.