Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a toolbox for constructing potential landscapes for Ising networks. The parameters of the networks can be directly supplied by users or estimated by the IsingFit package by van Borkulo and Epskamp (2016) <https://CRAN.R-project.org/package=IsingFit> from empirical data. The Ising model's Boltzmann distribution is preserved for the potential landscape function. The landscape functions can be used for quantifying and visualizing the stability of network states, as well as visualizing the simulation process.
Relocates oversampled data from a specific oversampling method to cover area determined by pure and proper class cover catch digraphs (PCCCD). It prevents any data to be generated in class overlapping area. For more details, see the corresponding publication: F. SaÄ lam (2025) <doi:10.1007/s10994-025-06755-8>.
Instrumental variable estimation for linear models by two-stage least-squares (2SLS) regression or by robust-regression via M-estimation (2SM) or MM-estimation (2SMM). The main ivreg() model-fitting function is designed to provide a workflow as similar as possible to standard lm() regression. A wide range of methods is provided for fitted ivreg model objects, including extensive functionality for computing and graphing regression diagnostics in addition to other standard model tools.
This package provides a novel machine learning method for plant viruses diagnostic using genome sequencing data. This package includes three different machine learning models, random forest, XGBoost, and elastic net, to train and predict mapped genome samples. Mappability profile and unreliable regions are introduced to the algorithm, and users can build a mappability profile from scratch with functions included in the package. Plotting mapped sample coverage information is provided.
This package provides a graphical user interface to the IsoplotR package for radiometric geochronology. The GUI runs in an internet browser and can either be used offline, or hosted on a server to provide online access to the IsoplotR toolbox.
This package provides API access to the <http://imdbapi.net> which maintains metadata about movies, games and television shows through a public API.
This package provides tools for estimating incidence from biomarker data in cross- sectional surveys, and for calibrating tests for recent infection. Implements and extends the method of Kassanjee et al. (2012) <doi:10.1097/EDE.0b013e3182576c07>.
This package provides a multivariate Gaussian mixture model framework to integrate multiple types of genomic data and allow modeling of inter-data-type correlations for association analysis. IMIX can be implemented to test whether a disease is associated with genes in multiple genomic data types, such as DNA methylation, copy number variation, gene expression, etc. It can also study the integration of multiple pathways. IMIX uses the summary statistics of association test outputs and conduct integration analysis for two or three types of genomics data. IMIX features statistically-principled model selection, global FDR control and computational efficiency. Details are described in Ziqiao Wang and Peng Wei (2020) <doi:10.1093/bioinformatics/btaa1001>.
This package provides a fragmentation spectra detection pipeline for high-throughput LC/HRMS data processing using peaklists generated by the IDSL.IPA workflow <doi:10.1021/acs.jproteome.2c00120>. The IDSL.CSA package can deconvolute fragmentation spectra from Composite Spectra Analysis (CSA), Data Dependent Acquisition (DDA) analysis, and various Data-Independent Acquisition (DIA) methods such as MS^E, All-Ion Fragmentation (AIF) and SWATH-MS analysis. The IDSL.CSA package was introduced in <doi:10.1021/acs.analchem.3c00376>.
The Integro-Difference Equation model is a linear, dynamical model used to model phenomena that evolve in space and in time; see, for example, Cressie and Wikle (2011, ISBN:978-0-471-69274-4) or Dewar et al. (2009) <doi:10.1109/TSP.2008.2005091>. At the heart of the model is the kernel, which dictates how the process evolves from one time point to the next. Both process and parameter reduction are used to facilitate computation, and spatially-varying kernels are allowed. Data used to estimate the parameters are assumed to be readings of the process corrupted by Gaussian measurement error. Parameters are fitted by maximum likelihood, and estimation is carried out using an evolution algorithm.
Extensive penalized variable selection methods have been developed in the past two decades for analyzing high dimensional omics data, such as gene expressions, single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and others. However, lipidomics data have been rarely investigated by using high dimensional variable selection methods. This package incorporates our recently developed penalization procedures to conduct interaction analysis for high dimensional lipidomics data with repeated measurements. The core module of this package is developed in C++. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.
Drawing statistical inference on the coefficients of a short- or long-horizon predictive regression with persistent regressors by using the IVX method of Magdalinos and Phillips (2009) <doi:10.1017/S0266466608090154> and Kostakis, Magdalinos and Stamatogiannis (2015) <doi:10.1093/rfs/hhu139>.
Manipulate integer-bounded intervals including finding overlaps, piling and merging.
Plots U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Calculates concordia and discordia ages. Performs linear regression of measurements with correlated errors using York', Titterington', Ludwig and Omnivariant Generalised Least-Squares ('OGLS') approaches. Generates Kernel Density Estimates (KDEs) and Cumulative Age Distributions (CADs). Produces Multidimensional Scaling (MDS) configurations and Shepard plots of multi-sample detrital datasets using the Kolmogorov-Smirnov distance as a dissimilarity measure. Calculates 40Ar/39Ar ages, isochrons, and age spectra. Computes weighted means accounting for overdispersion. Calculates U-Th-He (single grain and central) ages, logratio plots and ternary diagrams. Processes fission track data using the external detector method and LA-ICP-MS, calculates central ages and plots fission track and other data on radial (a.k.a. Galbraith') plots. Constructs total Pb-U, Pb-Pb, Th-Pb, K-Ca, Re-Os, Sm-Nd, Lu-Hf, Rb-Sr and 230Th-U isochrons as well as 230Th-U evolution plots.
Calculation of key bacterial growth curve parameters using fourth degree polynomial functions. Six growth curve parameters are provided including peak growth rate, doubling time, lag time, maximum growth, and etc. ipolygrowth takes time series data from individual biological samples (with technical replicates) or multiple samples.
This package implements Bayesian models to analyze data from tracer addition experiments. The implemented method was originally described in the article "A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from Isotope Tracer Addition Experiments" by López-Sepulcre et al. (2020) <doi:10.1086/708546>.
This package implements imputation methods using EM and Data Augmentation for multinomial data following the work of Schafer 1997 <ISBN: 978-0-412-04061-0>.
This package implements inequality constrained inference. This includes parameter estimation in normal (linear) models under linear equality and inequality constraints, as well as normal likelihood ratio tests involving inequality-constrained hypotheses. For inequality-constrained linear models, averaging over R-squared for different orderings of regressors is also included.
Simulate an inhomogeneous self-exciting process (IHSEP), or Hawkes process, with a given (possibly time-varying) baseline intensity and an excitation function. Calculate the likelihood of an IHSEP with given baseline intensity and excitation functions for an (increasing) sequence of event times. Calculate the point process residuals (integral transforms of the original event times). Calculate the mean intensity process.
This package provides methods to perform and analyse I-prior regression models. Estimation is done either via direct optimisation of the log-likelihood or an EM algorithm.
Implementing the interventional effects for mediation analysis for up to 3 mediators. The methods used are based on VanderWeele, Vansteelandt and Robins (2014) <doi:10.1097/ede.0000000000000034>, Vansteelandt and Daniel (2017) <doi:10.1097/ede.0000000000000596> and Chan and Leung (2020; unpublished manuscript, available on request from the author of this package). Linear regression, logistic regression and Poisson regression are used for continuous, binary and count mediator/outcome variables respectively.
Estimate test-retest reliability for complex sampling strategies and extract variances using IntraClass Effect Decomposition. Developed by Brandmaier et al. (2018) "Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)" <doi:10.7554/eLife.35718> Also includes functions to simulate data based on sampling strategy. Unofficial version release name: "Good work squirrels".
Enables the user to find the country, region, district, city, coordinates, zip code, time zone, ISP, domain name, connection type, area code, weather, Mobile Country Code, Mobile Network Code, mobile brand name, elevation, usage type, address type, IAB category and Autonomous system information that any IP address or hostname originates from. Supported IPv4 and IPv6. Please visit <https://www.ip2location.com> to learn more. You may also want to visit <https://lite.ip2location.com> for free database download. This package requires IP2Location Python module. At the terminal, please run pip install IP2Location to install the module.
The marginal treatment effect was introduced by Heckman and Vytlacil (2005) <doi:10.1111/j.1468-0262.2005.00594.x> to provide a choice-theoretic interpretation to instrumental variables models that maintain the monotonicity condition of Imbens and Angrist (1994) <doi:10.2307/2951620>. This interpretation can be used to extrapolate from the compliers to estimate treatment effects for other subpopulations. This package provides a flexible set of methods for conducting this extrapolation. It allows for parametric or nonparametric sieve estimation, and allows the user to maintain shape restrictions such as monotonicity. The package operates in the general framework developed by Mogstad, Santos and Torgovitsky (2018) <doi:10.3982/ECTA15463>, and accommodates either point identification or partial identification (bounds). In the partially identified case, bounds are computed using either linear programming or quadratically constrained quadratic programming. Support for four solvers is provided. Gurobi and the Gurobi R API can be obtained from <http://www.gurobi.com/index>. CPLEX can be obtained from <https://www.ibm.com/analytics/cplex-optimizer>. CPLEX R APIs Rcplex and cplexAPI are available from CRAN. MOSEK and the MOSEK R API can be obtained from <https://www.mosek.com/>. The lp_solve library is freely available from <http://lpsolve.sourceforge.net/5.5/>, and is included when installing its API lpSolveAPI', which is available from CRAN.