Implementation of Clarke's distribution-free test of non-nested models. Currently supported model functions are: lm(), glm() ('binomial', poisson', negative binomial links), polr() ('MASS'), clm() ('ordinal'), and multinom() ('nnet'). For more information on the test, see Clarke (2007) <doi:10.1093/pan/mpm004>.
This package performs hypothesis tests concerning a regression function in a least-squares model, where the null is a parametric function, and the alternative is the union of large-dimensional convex polyhedral cones. See Bodhisattva Sen and Mary C Meyer (2016) <doi:10.1111/rssb.12178> for more details.
The assay sensitivity is the minimum number of copies that the digital PCR assay can detect. Users provide serial dilution results in the format of counts of positive and total reaction wells. The output is the estimated assay sensitivity and the copy number per well in the initial dilute.
An R interface to the Free Dictionary API <https://dictionaryapi.dev/>, <https://github.com/meetDeveloper/freeDictionaryAPI>. Retrieve dictionary definitions for English words, as well as additional information including phonetics, part of speech, origins, audio pronunciation, example usage, synonyms and antonyms, returned in tidy format for ease of use.
The interface package to access data from the EpiGraphDB <https://epigraphdb.org> platform. It provides easy access to the EpiGraphDB platform with functions that query the corresponding REST endpoints on the API <https://api.epigraphdb.org> and return the response data in the tibble data frame format.
This package provides a comprehensive collection of datasets related to education, covering topics such as student performance, learning methods, test scores, absenteeism, and other educational metrics. This package serves as a resource for educational researchers, data analysts, and statisticians to explore and analyze data in the field of education.
This contains functions that can be used to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve for correlated right-censored time-to-event data. See Beyene and Chen (2024) <doi:10.1177/09622802231220496>.
Downloads all the datasets (you can exclude the daily ones or specify a list of those you are targeting specifically) from Kenneth French's Website at <https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html>, process them and convert them to list of xts (time series).
Classical hierarchical clustering algorithms, agglomerative and divisive clustering. Algorithms are implemented as a theoretical way, step by step. It includes some detailed functions that explain each step. Every function allows options to get different results using different techniques. The package explains non expert users how hierarchical clustering algorithms work.
Support functions, data sets, and vignettes for the psych package. Contains several of the biggest data sets for the psych package as well as four vignettes. A few helper functions for file manipulation are included as well. For more information, see the <https://personality-project.org/r/> web page.
The prevalence package provides Frequentist and Bayesian methods for prevalence assessment studies. IMPORTANT: the truePrev functions in the prevalence package call on JAGS (Just Another Gibbs Sampler), which therefore has to be available on the user's system. JAGS can be downloaded from <https://mcmc-jags.sourceforge.io/>.
This package provides functions for performing common tasks when working with slippy map tile service APIs e.g. Google maps, Open Street Map, Mapbox, Stamen, among others. Functionality includes converting from latitude and longitude to tile numbers, determining tile bounding boxes, and compositing tiles to a georeferenced raster image.
Simulation methods to study the effect of management policies on efforts to restore populations back to their original genetic composition. Allows for single-scenario simulation and for optimization of specific chosen scenarios. Further information can be found in Hernandez, Janzen and Lavretsky (2023) <doi:10.1111/1755-0998.13892>.
This package creates ggplot2'-based visualizations of smooth effects from GAM (Generalized Additive Models) fitted with mgcv and spline effects from GLM (Generalized Linear Models). Supports interaction terms and provides hazard ratio plots with histograms for survival analysis. Wood (2017, ISBN:9781498728331) provides comprehensive methodology for generalized additive models.
This package provides tools for simulating and modeling traffic flow on road networks using spatial conditional autoregressive (CAR) models. The package represents road systems as graphs derived from OpenStreetMap data <https://www.openstreetmap.org/> and supports network-based spatial dependence, basic preprocessing, and visualization for spatial traffic analysis.
This package provides a mathematical optimization procedure in combination with statistical bootstrap for the estimation of the latent signals (sometimes called scores) informing the global consensus ranking (often named aggregation ranking). To solve mid/large-scale problems, users should install the gurobi optimiser (available from <https://www.gurobi.com/>).
Create dense vector representation of words and documents using quanteda'. Currently implements Word2vec (Mikolov et al., 2013) <doi:10.48550/arXiv.1310.4546> and Latent Semantic Analysis (Deerwester et al., 1990) <doi:10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9>.
This package provides a set of R functions for identifying and correcting HGNC human gene symbols. In addition, you can identify MGI mouse gene symbols, which have been converted to date format by Excel, withdrawn, or aliased. It also contains functions for reversibly converting between HGNC symbols and valid R names.
Radiance is a web application environment, which is sort of like a web framework, but more general, more flexible. It should let you write personal websites and generally deployable applications easily and in such a way that they can be used on practically any setup without having to undergo special adaptations.
The package aims to facilitate Russian typesetting (based on input using MicroSoft Code Page 1251). Russian hyphenation is selected, and various mathematical commands are set up in Russian style. Furthermore all Cyrillic letters catcodes are set to letter, so that commands with Cyrillic letters in their names may be defined.
Algorithm and tools for in silico pack-TYPE transposon discovery. Filters a given genome for properties unique to DNA transposons and provides tools for the investigation of returned matches. Sequences are input in DNAString format, and ranges are returned as a dataframe (in the format returned by as.dataframe(GRanges)).
This package provides a novel feature selection algorithm for binary classification using support vector machine recursive feature elimination SVM-RFE and t-statistic. In this feature selection process, the selected features are differentially significant between the two classes and also they are good classifier with higher degree of classification accuracy.
This package provides tools for the multiscale spatial analysis of multivariate data. Several methods are based on the use of a spatial weighting matrix and its eigenvector decomposition (Moran's Eigenvectors Maps, MEM). Several approaches are described in the review Dray et al (2012) <doi:10.1890/11-1183.1>.
This package provides a helpful R6 class and methods for interacting with the Posit Connect Server API along with some meaningful utility functions for regular tasks. API documentation varies by Posit Connect installation and version, but the latest documentation is also hosted publicly at <https://docs.posit.co/connect/api/>.