This package provides a not uncommon task for quants is to create waterfall charts'. There seems to be no simple way to do this in ggplot2 currently. This package contains a single function (waterfall) that simply draws a waterfall chart in a ggplot2 object. Some flexibility is provided, though often the object created will need to be modified through a theme.
The CTexploreR package re-defines the list of Cancer Testis/Germline (CT) genes. It is based on publicly available RNAseq databases (GTEx, CCLE and TCGA) and summarises CT genes main characteristics. Several visualisation functions allow to explore their expression in different types of tissues and cancer cells, or to inspect the methylation status of their promoters in normal tissues.
This package is a tool to predict the power of CyTOF experiments in the context of differential state analyses. The package provides a shiny app with two options to predict the power of an experiment: i. generation of in-sicilico CyTOF data, using users input ii. browsing in a grid of parameters for which the power was already precomputed.
This package builds on existing tools and adds some simple but extremely useful capabilities for working wth ChIP-Seq data. The focus is on detecting differential binding windows/regions. One set of functions focusses on set-operations retaining mcols for GRanges objects, whilst another group of functions are to aid visualisation of results. Coercion to tibble objects is also implemented.
CopywriteR extracts DNA copy number information from targeted sequencing by utilizing off-target reads. It allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. Thereby, CopywriteR constitutes a widely applicable alternative to available copy number detection tools.
This package contains the helper files that are required to run the Bioconductor package CopywriteR. It contains pre-assembled 1kb bin GC-content and mappability files for the reference genomes hg18, hg19, hg38, mm9 and mm10. In addition, it contains a blacklist filter to remove regions that display copy number variation. Files are stored as GRanges objects from the GenomicRanges Bioconductor package.
This package provides functionality to compute various node centrality measures on networks. Included are functions to compute betweenness centrality (by utilizing Madduri and Bader's SNAP library), implementations of Burt's constraint and effective network size (ENS) metrics, Borgatti's algorithm to identify key players, and Valente's bridging metric. The betweenness, Key Players, and bridging implementations are parallelized with OpenMP.
This package provides a wrapper for the homologene database by the National Center for Biotechnology Information (NCBI). It allows searching for gene homologs across species. The package also includes an updated version of the homologene database where gene identifiers and symbols are replaced with their latest (at the time of submission) version and functions to fetch latest annotation data to keep updated.
This gem provides beautiful console logging for Ruby applications. It implements fast, buffered log output and has the following features:
Thread safe global logger with per-fiber context
Carry along context with nested loggers
Enable/disable log levels per class
Detailed logging of exceptions
Beautiful logging to the terminal or structured logging using JSON.
Modern results of psychometric theory are implemented to provide users with a way of evaluating the internal structure of a set of items guided by theory. These methods are discussed in detail in VanderWeele and Padgett (2024) <doi:10.31234/osf.io/rnbk5>. The relative excess correlation matrices will, generally, have numerous negative entries even if all of the raw correlations between each pair of indicators are positive. The positive deviations of the relative excess correlation matrix entries help identify clusters of indicators that are more strongly related to one another, providing insights somewhat analogous to factor analysis, but without the need for rotations or decisions concerning the number of factors. A goal similar to exploratory/confirmatory factor analysis, but recmetrics uses novel methods that do not rely on assumptions of latent variables or latent variable structures.
Computes a range of scatterplot diagnostics (scagnostics) on pairs of numerical variables in a data set. A range of scagnostics, including graph and association-based scagnostics described by Leland Wilkinson and Graham Wills (2008) <doi:10.1198/106186008X320465> and association-based scagnostics described by Katrin Grimm (2016,ISBN:978-3-8439-3092-5) can be computed. Summary and plotting functions are provided.
Returns an edit-distance based clusterization of an input vector of strings. Each cluster will contain a set of strings w/ small mutual edit-distance (e.g., Levenshtein, optimum-sequence-alignment, Damerau-Levenshtein), as computed by stringdist::stringdist(). The set of all mutual edit-distances is then used by graph algorithms (from package igraph') to single out subsets of high connectivity.
This package performs the cross-match test that is an exact, distribution free test of equality of 2 high dimensional multivariate distributions. The input is a distance matrix and the labels of the two groups to be compared, the output is the number of cross-matches and a p-value. See Rosenbaum (2005) <doi:10.1111/j.1467-9868.2005.00513.x>.
This package provides a set of extensions for the ergm package to fit multilayer/multiplex/multirelational networks and samples of multiple networks. ergm.multi is a part of the Statnet suite of packages for network analysis. See Krivitsky, Koehly, and Marcum (2020) <doi:10.1007/s11336-020-09720-7> and Krivitsky, Coletti, and Hens (2023) <doi:10.1080/01621459.2023.2242627>.
Fits extreme value mixture models, which are models for tails not requiring selection of a threshold, for continuous data. It includes functions for model comparison, estimation of quantity of interest in extreme value analysis and plotting. Reference: CN Behrens, HF Lopes, D Gamerman (2004) <doi:10.1191/1471082X04st075oa>. FF do Nascimento, D. Gamerman, HF Lopes <doi:10.1007/s11222-011-9270-z>.
Small set of functions designed to speed up the computation of certain matrix operations that are commonly used in statistics and econometrics. It provides efficient implementations for the computation of several structured matrices, matrix decompositions and statistical procedures, many of which have minimal memory overhead. Furthermore, the package provides interfaces to C code callable by another C code from other R packages.
Fits hidden Markov models with discrete non-parametric observation distributions to data sets. The observations may be univariate or bivariate. Simulates data from such models. Finds most probable underlying hidden states, the most probable sequences of such states, and the log likelihood of a collection of observations given the parameters of the model. Auxiliary predictors are accommodated in the univariate setting.
Multi-Fidelity emulator for data from computer simulations of the same underlying system but at different input locations and fidelity level, where both the input locations and fidelity level can be continuous. Active Learning can be performed with an implementation of the Integrated Mean Square Prediction Error (IMSPE) criterion developed by Boutelet and Sung (2025, <doi:10.48550/arXiv.2503.23158>).
Fits a Bayesian Regression Model for multivariate count data. This model assumes that the data is distributed according to the Conway-Maxwell-Poisson distribution, and for each response variable it is associate different covariates. This model allows to account for correlations between the counts by using latent effects based on the Chib and Winkelmann (2001) <http://www.jstor.org/stable/1392277> proposal.
This package provides functions to design and simulate optimal two-stage randomized controlled trials (RCTs) with ordered categorical outcomes, supporting rank-based tests and group-sequential decision rules. Methods build on classical and modern rank tests and two-stage/Group-Sequential designs, e.g., Park (2025) <doi: 10.1371/journal.pone.0318211>. Please see the package reference manual and vignettes for details.
Discovery of spatial patterns with Hidden Markov Random Field. This package is designed for spatial transcriptomic data and single molecule fluorescent in situ hybridization (FISH) data such as sequential fluorescence in situ hybridization (seqFISH) and multiplexed error-robust fluorescence in situ hybridization (MERFISH). The methods implemented in this package are described in Zhu et al. (2018) <doi:10.1038/nbt.4260>.
This package provides a tool to fit and compare the wind turbine power curves with successful curve fitting techniques. Facilitates to examine and compare the performance of a user-defined power curve fitting techniques. Also, provide features to generate power curve discrete points from a graphical power curves. Data on the power curves of the wind turbine from major manufacturers are provided.
Computes Multiple Co-Inertia Analysis (MCIA), a dimensionality reduction (jDR) algorithm, for a multi-block dataset using a modification to the Nonlinear Iterative Partial Least Squares method (NIPALS) proposed in (Hanafi et. al, 2010). Allows multiple options for row- and table-level preprocessing, and speeds up computation of variance explained. Vignettes detail application to bulk- and single cell- multi-omics studies.
TADCompare is an R package designed to identify and characterize differential Topologically Associated Domains (TADs) between multiple Hi-C contact matrices. It contains functions for finding differential TADs between two datasets, finding differential TADs over time and identifying consensus TADs across multiple matrices. It takes all of the main types of HiC input and returns simple, comprehensive, easy to analyze results.