This allows you to generate reporting workflows around nlmixr2 analyses with outputs in Word and PowerPoint. You can specify figures, tables and report structure in a user-definable YAML file. Also you can use the internal functions to access the figures and tables to allow their including in other outputs (e.g. R Markdown).
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
This package provides a framework for creating interactive figures for data exploration. All plots are automatically linked and support several kinds of interactive features, including selection, zooming, panning, and parameter manipulation. The figures can be interacted with either manually, using a mouse and a keyboard, or by running code from inside an active R session.
Cluster analysis via nonparametric density estimation is performed. Operationally, the kernel method is used throughout to estimate the density. Diagnostics methods for evaluating the quality of the clustering are available. The package includes also a routine to estimate the probability density function obtained by the kernel method, given a set of data with arbitrary dimensions.
This package implements parsimonious mixtures of MSEN and MTIN distributions via expectation- maximization based algorithms for model-based clustering. For each mixture component, parsimony is reached via the eigen-decomposition of the scale matrices and by imposing a constraint on the tailedness parameter. This produces a family of 28 parsimonious mixture models for each distribution.
Survival analysis with sparse longitudinal covariates under right censoring scheme. Different hazards models are involved. Please cite the manuscripts corresponding to this package: Sun, Z. et al. (2022) <doi:10.1007/s10985-022-09548-6>, Sun, Z. and Cao, H. (2023) <arXiv:2310.15877> and Sun, D. et al. (2023) <arXiv:2308.15549>.
Built on top of the tibble package, tibbletime is an extension that allows for the creation of time aware tibbles. Some immediate advantages of this include: the ability to perform time-based subsetting on tibbles, quickly summarising and aggregating results by time periods, and creating columns that can be used as dplyr time-based groups.
Uses bootstrap to test zero order correlation being equal to a partial or semi-partial correlation (one or two tailed). Confidence intervals for the parameter (zero order minus partial) can also be determined. Implements the bias-corrected and accelerated bootstrap method as described in "An Introduction to the Bootstrap" Efron (1983) <0-412-04231-2>.
This package provides string arithmetic, reassignment operators, logical operators that handle missing values, and extra logical operators such as floating point equality and all or nothing. The intent is to allow R users to write code that is easier to read, write, and maintain while providing a friendlier experience to new R users from other language backgrounds (such as Python') who are used to concepts such as x += 1 and foo + bar'. Includes operators for not in, easy floating point comparisons, === equivalent, and SQL-like like operations (), etc. We also added in some extra helper functions, such as OS checks, pasting in Oxford comma format, and functions to get the first, last, nth, or most common element of a vector or word in a string.
The nls.lm function provides an R interface to lmder and lmdif from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls-like calls using the nlsLM function.
This package provides S4 classes for general nucleases, CRISPR nucleases, CRISPR nickases, and base editors.Several CRISPR-specific genome arithmetic functions are implemented to help extract genomic coordinates of spacer and protospacer sequences. Commonly-used CRISPR nuclease objects are provided that can be readily used in other packages. Both DNA- and RNA-targeting nucleases are supported.
HMP16SData is a Bioconductor ExperimentData package of the Human Microbiome Project (HMP) 16S rRNA sequencing data for variable regions 1–3 and 3–5. Raw data files are provided in the package as downloaded from the HMP Data Analysis and Coordination Center. Processed data is provided as SummarizedExperiment class objects via ExperimentHub.
ncRNAtools provides a set of basic tools for handling and analyzing non-coding RNAs. These include tools to access the RNAcentral database and to predict and visualize the secondary structure of non-coding RNAs. The package also provides tools to read, write and interconvert the file formats most commonly used for representing such secondary structures.
This package contains a set of functions to perform large-scale analysis of pharmaco-genomic data. These include the PharmacoSet object for storing the results of pharmacogenomic experiments, as well as a number of functions for computing common summaries of drug-dose response and correlating them with the molecular features in a cancer cell-line.
The ggarrow package is a ggplot2 extension that plots a variety of different arrow segments with many options to customize. The arrowheadr package makes it easy to create custom arrowheads and fins within the parameters that ggarrow functions expect. It has preset arrowheads and a collection of functions to create and transform data for customizing arrows.
Inference of protein complex states from quantitative proteomics data. The package takes information on known stable protein interactions (i.e. protein components of the same complex) and assesses how protein quantitative ratios change between different conditions. It reports protein pairs for which relative protein quantities to each other have been significantly altered in the tested condition.
Annuity Random Interest Rates proposes different techniques for the approximation of the present and final value of a unitary annuity-due or annuity-immediate considering interest rate as a random variable. Cruz Rambaud et al. (2017) <doi:10.1007/978-3-319-54819-7_16>. Cruz Rambaud et al. (2015) <doi:10.23755/rm.v28i1.25>.
Interface to the Azure Machine Learning Software Development Kit ('SDK'). Data scientists can use the SDK to train, deploy, automate, and manage machine learning models on the Azure Machine Learning service. To learn more about Azure Machine Learning visit the website: <https://docs.microsoft.com/en-us/azure/machine-learning/service/overview-what-is-azure-ml>.
An interface to Azure Queue Storage'. This is a cloud service for storing large numbers of messages, for example from automated sensors, that can be accessed remotely via authenticated calls using HTTP or HTTPS. Queue storage is often used to create a backlog of work to process asynchronously. Part of the AzureR family of packages.
Microsoft Word docx files provide an XML structure that is fairly straightforward to navigate, especially when it applies to Word tables and comments. Tools are provided to determine table count/structure, comment count and also to extract/clean tables and comments from Microsoft Word docx documents. There is also nascent support for .doc and .pptx files.
Enables users to incorporate expert opinion with parametric survival analysis using a Bayesian or frequentist approach. Expert Opinion can be provided on the survival probabilities at certain time-point(s) or for the difference in mean survival between two treatment arms. Please reference it's use as Cooney, P., White, A. (2023) <doi:10.1177/0272989X221150212>.
This package implements three complementary pipelines for causal analysis on macroeconomic time series: (1) Error-Correction Models with Multivariate Adaptive Regression Splines (ECM-MARS), (2) Bayesian Structural Time Series (BSTS), and (3) Bayesian GLM with AR(1) errors validated with Leave-Future-Out (LFO). Heavy backends (Stan) are optional and never used in examples or tests.
This package provides a tidy R interface for count time series analysis. It includes implementation of the INGARCH (Integer Generalized Autoregressive Conditional Heteroskedasticity) model from the tscount package and the GLARMA (Generalized Linear Autoregressive Moving Averages) model from the glarma package. Additionally, it offers automated parameter selection algorithms based on the minimization of a penalized likelihood.
Play or simulate games of "Four in a Row" in the R console. This package is designed for educational purposes, encouraging users to write their own functions to play the game automatically. It contains a collection of built-in functions that play the game at various skill levels, for users to test their own functions against.