The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.
spatialFDA is a package to calculate spatial statistics metrics. The package takes a SpatialExperiment object and calculates spatial statistics metrics using the package spatstat. Then it compares the resulting functions across samples/conditions using functional additive models as implemented in the package refund. Furthermore, it provides exploratory visualisations using functional principal component analysis, as well implemented in refund.
Estimate group aggregates, where one can set user-defined conditions that each group of records must satisfy to be suitable for aggregation. If a group of records is not suitable, it is expanded using a collapsing scheme defined by the user. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v112.i04>.
This package contains a range of functions covering the present development of the distributional method for the dichotomisation of continuous outcomes. The method provides estimates with standard error of a comparison of proportions (difference, odds ratio and risk ratio) derived, with similar precision, from a comparison of means. See the URL below or <arXiv:1809.03279> for more information.
The increasing popularity of geographically weighted (GW) techniques has resulted in the development of several R packages, such as GWmodel'. To facilitate their usages, GWmodelVis provides a shiny'-based interactive visualization toolkit for geographically weighted (GW) models. It includes a number of visualization tools, including dynamic mapping of parameter surfaces, statistical visualization, sonification and exporting videos via FFmpeg'.
This package implements the G-Formula method for causal inference with time-varying treatments and confounders using Bayesian multiple imputation methods, as described by Bartlett et al (2025) <doi:10.1177/09622802251316971>. It creates multiple synthetic imputed datasets under treatment regimes of interest using the mice package. These can then be analysed using rules developed for analysing multiple synthetic datasets.
Support for geostatistical analysis of multivariate data, in particular data with restrictions, e.g. positive amounts, compositions, distributional data, microstructural data, etc. It includes descriptive analysis and modelling for such data, both from a two-point Gaussian perspective and multipoint perspective. The methods mainly follow Tolosana-Delgado, Mueller and van den Boogaart (2018) <doi:10.1007/s11004-018-9769-3>.
Life and Fertility Tables are appropriate to study the dynamics of arthropods populations. This package provides utilities for constructing Life Tables and Fertility Tables, related demographic parameters, and some simple graphs of interest. It also offers functions to transform the obtained data into a known format for better manipulation. In addition, two methods for obtaining the confidence interval are included.
This package provides a suite of tools for literature-based discovery in biomedical research. Provides functions for retrieving scientific articles from PubMed and other NCBI databases, extracting biomedical entities (diseases, drugs, genes, etc.), building co-occurrence networks, and applying various discovery models including ABC', AnC', LSI', and BITOLA'. The package also includes visualization tools for exploring discovered connections.
Toolbox and shiny application to help researchers design movement ecology studies, focusing on two key objectives: estimating home range areas, and estimating fine-scale movement behavior, specifically speed and distance traveled. It provides interactive simulations and methodological guidance to support study planning and decision-making. The application is described in Silva et al. (2023) <doi:10.1111/2041-210X.14153>.
Framework for the Item Response Theory analysis of dichotomous and ordinal polytomous outcomes under the assumption of multidimensionality and discreteness of the latent traits. The fitting algorithms allow for missing responses and for different item parameterizations and are based on the Expectation-Maximization paradigm. Individual covariates affecting the class weights may be included in the new version (since 2.1).
Comprehensively identifying states and state-like actors is difficult. This package provides data on states and state-like entities in the international system across time. The package combines and cross-references several existing datasets consistent with the aims and functions of the manydata package. It also includes functions for identifying state references in text, and for generating fictional state names.
Wraps the nametag library <https://github.com/ufal/nametag>, allowing users to find and extract entities (names, persons, locations, addresses, ...) in raw text and build your own entity recognition models. Based on a maximum entropy Markov model which is described in Strakova J., Straka M. and Hajic J. (2013) <https://ufal.mff.cuni.cz/~straka/papers/2013-tsd_ner.pdf>.
This package provides a wrapper for optim for nonlinear regression problems; see Nocedal J and Write S (2006, ISBN: 978-0387-30303-1). Performs ordinary least squares (OLS), iterative re-weighted least squares (IRWLS), and maximum likelihood (MLE). Also includes the robust outlier detection (ROUT) algorithm; see Motulsky, H and Brown, R (2006) <doi:10.1186/1471-2105-7-123>.
Potential outliers are identified for all combinations of a dataset's variables. O3 plots are described in Unwin(2019) <doi:10.1080/10618600.2019.1575226>. The available methods are HDoutliers() from the package HDoutliers', FastPCS() from the package FastPCS', mvBACON() from robustX', adjOutlyingness() from robustbase', DectectDeviatingCells() from cellWise', covMcd() from robustbase'.
The probaverse is a suite of packages designed to facilitate creating advanced statistical models through probability distributions. These packages work best when loaded together because they share a common design philosophy and focus on different aspects of developing statistical models. Inspired by the tidyverse package, the probaverse package makes it easy to load the entire suite of probaverse packages together.
R functions to access provenance information collected by rdt or rdtLite'. The information is stored inside a ProvInfo object and can be accessed through a collection of functions that will return the requested data. The exact format of the JSON created by rdt and rdtLite is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>.
This package provides a set of tools for determining the necessary sample size in order to identify the optimal dynamic treatment regime in a sequential, multiple assignment, randomized trial (SMART). Utilizes multiple comparisons with the best methodology to adjust for multiple comparisons. Designed for an arbitrary SMART design. Please see Artman (2018) <doi:10.1093/biostatistics/kxy064> for more details.
This package provides a comprehensive R interface to the VirusTotal API (v2 and v3), a Google service that analyzes files and URLs for viruses, worms, trojans and other malware. Features include file/URL scanning, domain categorization, passive DNS information, IP reputation analysis, and comment/voting systems. Implements rate limiting, error handling, and response validation for robust security analysis workflows.
This package contains the helper files that are required to run the Bioconductor package CopywriteR. It contains pre-assembled 1kb bin GC-content and mappability files for the reference genomes hg18, hg19, hg38, mm9 and mm10. In addition, it contains a blacklist filter to remove regions that display copy number variation. Files are stored as GRanges objects from the GenomicRanges Bioconductor package.
CopywriteR extracts DNA copy number information from targeted sequencing by utilizing off-target reads. It allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. Thereby, CopywriteR constitutes a widely applicable alternative to available copy number detection tools.
This package provides a wrapper for the homologene database by the National Center for Biotechnology Information (NCBI). It allows searching for gene homologs across species. The package also includes an updated version of the homologene database where gene identifiers and symbols are replaced with their latest (at the time of submission) version and functions to fetch latest annotation data to keep updated.
This package provides functionality to compute various node centrality measures on networks. Included are functions to compute betweenness centrality (by utilizing Madduri and Bader's SNAP library), implementations of Burt's constraint and effective network size (ENS) metrics, Borgatti's algorithm to identify key players, and Valente's bridging metric. The betweenness, Key Players, and bridging implementations are parallelized with OpenMP.
This gem provides beautiful console logging for Ruby applications. It implements fast, buffered log output and has the following features:
Thread safe global logger with per-fiber context
Carry along context with nested loggers
Enable/disable log levels per class
Detailed logging of exceptions
Beautiful logging to the terminal or structured logging using JSON.