This package provides a generalization of the Synth package that is designed for data at a more granular level (e.g., micro-level). Provides functions to construct weights (including propensity score-type weights) and run analyses for synthetic control methods with micro- and meso-level data; see Robbins, Saunders, and Kilmer (2017) <doi:10.1080/01621459.2016.1213634> and Robbins and Davenport (2021) <doi:10.18637/jss.v097.i02>.
Scrapes data from the NHL and ESPN APIs into tibble's. It primarily wraps endpoints documented by Zach Maludzinski (2023) <https://github.com/Zmalski/NHL-API-Reference>, Drew Hynes (2018) <https://gitlab.com/dword4/nhlapi/>, and Joseph Wilson (2023) <https://github.com/pseudo-r/Public-ESPN-API>, covering data from high-level multi-season summaries and award winners to low-level play-by-play logs and sports books odds.
This package creates and manages a provenance graph corresponding to the provenance created by the rdtLite package, which collects provenance from R scripts. rdtLite is available on CRAN. The provenance format is an extension of the W3C PROV JSON format (<https://www.w3.org/Submission/2013/SUBM-prov-json-20130424/>). The extended JSON provenance format is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>.
This package provides a collection of easy-to-use tools for regression analysis of survival data with a cure fraction proposed in Su et al. (2022) <doi:10.1177/09622802221108579>. The modeling framework is based on the Cox proportional hazards mixture cure model and the bounded cumulative hazard (promotion time cure) model. The pseudo-observations approach is utilized to assess covariate effects and embedded in the variable selection procedure.
Parametric linkage analysis of monogenic traits in medical pedigrees. Features include singlepoint analysis, multipoint analysis via MERLIN (Abecasis et al. (2002) <doi:10.1038/ng786>), visualisation of log of the odds (LOD) scores and summaries of linkage peaks. Disease models may be specified to accommodate phenocopies, reduced penetrance and liability classes. paramlink2 is part of the pedsuite package ecosystem, presented in Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302).
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
Modelling the yield curve with some parametric models. The models implemented are: Nelson, C.R., and A.F. Siegel (1987) <doi: 10.1086/296409>, Diebold, F.X. and Li, C. (2006) <doi: 10.1016/j.jeconom.2005.03.005> and Svensson, L.E. (1994) <doi: 10.3386/w4871>. The package also includes the data of the term structure of interest rate of Federal Reserve Bank and European Central Bank.
JASPAR is an open-access database containing manually curated, non-redundant transcription factor (TF) binding profiles for TFs across six taxonomic groups. In this 9th release, we expanded the CORE collection with 341 new profiles (148 for plants, 101 for vertebrates, 85 for urochordates, and 7 for insects), which corresponds to a 19% expansion over the previous release. To search thisdatabases, please use the package TFBSTools (>= 1.31.2).
Casting metadata for REDCap database creation and handling of castellated data using repeated instruments and longitudinal projects in REDCap'. Keeps a focused data export approach, by allowing to only export required data from the database. Also for casting new REDCap databases based on datasets from other sources. Originally forked from the R part of REDCapRITS by Paul Egeler. See <https://github.com/pegeler/REDCapRITS>. REDCap (Research Electronic Data Capture) is a secure, web-based software platform designed to support data capture for research studies, providing 1) an intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and export procedures; 3) automated export procedures for seamless data downloads to common statistical packages; and 4) procedures for data integration and interoperability with external sources (Harris et al (2009) <doi:10.1016/j.jbi.2008.08.010>; Harris et al (2019) <doi:10.1016/j.jbi.2019.103208>).
This package provides a set of tools for performing graph theory analysis of brain MRI data. It works with data from a Freesurfer analysis (cortical thickness, volumes, local gyrification index, surface area), diffusion tensor tractography data (e.g., from FSL) and resting-state fMRI data (e.g., from DPABI). It contains a graphical user interface for graph visualization and data exploration, along with several functions for generating useful figures.
Example data sets to run the example problems from causal inference textbooks. Currently, contains data sets for Huntington-Klein, Nick (2021 and 2025) "The Effect" <https://theeffectbook.net>, first and second edition, Cunningham, Scott (2021 and 2025, ISBN-13: 978-0-300-25168-5) "Causal Inference: The Mixtape", and Hernán, Miguel and James Robins (2020) "Causal Inference: What If" <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>.
This package implements the count splitting methodology from Neufeld et al. (2022) <doi:10.1093/biostatistics/kxac047> and Neufeld et al. (2023) <arXiv:2307.12985>. Intended for turning a matrix of single-cell RNA sequencing counts, or similar count datasets, into independent folds that can be used for training/testing or cross validation. Assumes that the entries in the matrix are from a Poisson or a negative binomial distribution.
Build graph/network structures using functions for stepwise addition and deletion of nodes and edges. Work with data available in tables for bulk addition of nodes, edges, and associated metadata. Use graph selections and traversals to apply changes to specific nodes or edges. A wide selection of graph algorithms allow for the analysis of graphs. Visualize the graphs and take advantage of any aesthetic properties assigned to nodes and edges.
Generates (U,W) mixture graphs where U is a line graph graphon and W is a dense graphon. Graphons are graph limits and graphon U can be written as sequence of positive numbers adding to 1. Graphs are sampled from U and W and joined randomly to obtain the mixture graph. Given a mixture graph, U can be inferred. Kandanaarachchi and Ong (2025) <doi:10.48550/arXiv.2505.13864>.
Reads annual financial reports including assets, liabilities, dividends history, stockholder composition and much more from Bovespa's DFP, FRE and FCA systems <http://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/empresas-listadas.htm>. These are web based interfaces for all financial reports of companies traded at Bovespa. The package is specially designed for large scale data importation, keeping a tabular (long) structure for easier processing.
This package provides tools for plotting gene clusters and transcripts by importing data from GenBank, FASTA, and GFF files. It performs BLASTP and MUMmer alignments [Altschul et al. (1990) <doi:10.1016/S0022-2836(05)80360-2>; Delcher et al. (1999) <doi:10.1093/nar/27.11.2369>] and displays results on gene arrow maps. Extensive customization options are available, including legends, labels, annotations, scales, colors, tooltips, and more.
Computes individual causes of death and population cause-specific mortality fractions using the InSilicoVA algorithm from McCormick et al. (2016) <DOI:10.1080/01621459.2016.1152191>. It uses data derived from verbal autopsy (VA) interviews, in a format similar to the input of the widely used InterVA method. This package provides general model fitting and customization for InSilicoVA algorithm and basic graphical visualization of the output.
Design and analysis of confirmatory adaptive clinical trials using the optimal conditional error framework according to Brannath and Bauer (2004) <doi:10.1111/j.0006-341X.2004.00221.x>. An extension to the optimal conditional error function using interim estimates as described in Brannath and Dreher (2024) <doi:10.48550/arXiv.2402.00814> and functions to ensure that the resulting conditional error function is non-increasing are also available.
Multiple tools are now available for inferring the personalised germ line set from an adaptive immune receptor repertoire. Output from these tools is converted to a single format and supplemented with rich data such as usage and characterisation of novel germ line alleles. This data can be particularly useful when considering the validity of novel inferences. Use of the analysis provided is described in <doi:10.3389/fimmu.2019.00435>.
Web application using shiny for the SSD (Species Sensitivity Distribution) module of the MOSAIC (MOdeling and StAtistical tools for ecotoxICology) platform. It estimates the Hazardous Concentration for x% of the species (HCx) from toxicity values that can be censored and provides various plotting options for a better understanding of the results. See our companion paper Kon Kam King et al. (2014) <doi:10.48550/arXiv.1311.5772>.
Tidal analysis of evenly spaced observed time series (time step 1 to 60 min) with or without shorter gaps using the harmonic representation of inequalities. The analysis should preferably cover an observation period of at least 19 years. For shorter periods low frequency constituents are not taken into account, in accordance with the Rayleigh-Criterion. The main objective of this package is to synthesize or predict a tidal time series.
This package provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
This package implements inferential methods to compare gene lists in terms of their biological meaning as expressed in the GO. The compared gene lists are characterized by cross-tabulation frequency tables of enriched GO items. Dissimilarity between gene lists is evaluated using the Sorensen-Dice index. The fundamental guiding principle is that two gene lists are taken as similar if they share a great proportion of common enriched GO items.
This package implements an approximate string matching version of R's native match function. It can calculate various string distances based on edits (Damerau-Levenshtein, Hamming, Levenshtein, optimal string alignment), qgrams (q- gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An implementation of soundex is provided as well. Distances can be computed between character vectors while taking proper care of encoding or between integer vectors representing generic sequences.